Line 42: Line 42:
 
h) <math class="inline">x_3[n] =(\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}})^n </math>
 
h) <math class="inline">x_3[n] =(\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}})^n </math>
  
Note: All of these DFT are VERY simple to compute. If your computation looks like a monster, look for a simpler approach!
+
Note: All of these DFTs are VERY simple to compute. If your computation looks like a monster, look for a simpler approach!
 
----
 
----
 
==Question 2 ==
 
==Question 2 ==
 
Compute the inverse DFT of  <math class="inline">X[k]= e^{j \pi k }+e^{-j \frac{\pi}{2} k} </math>.
 
Compute the inverse DFT of  <math class="inline">X[k]= e^{j \pi k }+e^{-j \frac{\pi}{2} k} </math>.
  
Note: Again, this is a VERY simple problem. If your computation looks like a monster, look for a simpler approach!
+
Note: Again, this is a VERY simple problem. Have pity for your grader, and try to use a simple approach!
 +
----
 
== Question 3 ==
 
== Question 3 ==
 
Prove the time shifting property of the DFT.  
 
Prove the time shifting property of the DFT.  

Latest revision as of 06:30, 29 September 2014


Homework 5, ECE438, Fall 2014, Prof. Boutin

Hard copy due in class, Monday October 6, 2014.


Presentation Guidelines

  • Write only on one side of the paper.
  • Use a "clean" sheet of paper (e.g., not torn out of a spiral book).
  • Staple the pages together.
  • Include a cover page.
  • Do not let your dog play with your homework.

Questions 1

Compute the DFT of the following signals x[n] (if possible). How does your answer relate to the Fourier series coefficients of x[n]?

a) $ x_1[n] = \left\{ \begin{array}{ll} 1, & n \text{ multiple of } N\\ 0, & \text{ else}. \end{array} \right. $


b) $ x_1[n]= e^{j \frac{2}{3} \pi n}; $

c) $ x_5[n]= e^{-j \frac{2}{1000} \pi n}; $

d) $ x_2[n]= e^{j \frac{2}{\sqrt{3}} \pi n}; $

e) $ x_6[n]= \cos\left( \frac{2}{1000} \pi n\right) ; $

f) $ x_2[n]= e^{j \frac{\pi}{3} n } \cos ( \frac{\pi}{6} n ) $

g) $ x_8[n]= (-j)^n . $

h) $ x_3[n] =(\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}})^n $

Note: All of these DFTs are VERY simple to compute. If your computation looks like a monster, look for a simpler approach!


Question 2

Compute the inverse DFT of $ X[k]= e^{j \pi k }+e^{-j \frac{\pi}{2} k} $.

Note: Again, this is a VERY simple problem. Have pity for your grader, and try to use a simple approach!


Question 3

Prove the time shifting property of the DFT.


Discussion

You may discuss the homework below.

  • write comment/question here
    • answer will go here

Back to ECE438, Fall 2014, Prof. Boutin

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang