(New page: Category:ECE438Fall2014Boutin Category:ECE438 Category:ECE Category:fourier transform Category:homework =Homework 5, ECE438, Fall 2014, [[user:mboutin|Prof. Boutin...)
 
Line 15: Line 15:
 
* Do not let your dog play with your homework.
 
* Do not let your dog play with your homework.
 
----
 
----
 +
==Questions 1==
 +
Compute the DFT of the following signals
  
 +
a) <math class="inline">
 +
x_1[n] = \left\{
 +
\begin{array}{ll}
 +
1, & n \text{ multiple of } N\\
 +
0, & \text{ else}.
 +
\end{array}
 +
\right.
 +
</math>
 +
 +
b) <math class="inline">x_2[n]= e^{j \frac{\pi}{3} n } \cos ( \frac{\pi}{6} n )</math>
 +
 +
 +
 +
c) <math class="inline">x_3[n] =(\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}})^n </math>
 +
 +
==Question 2 ==
 +
Compute the inverse DFT of  <math class="inline">X[k]= e^{j \pi k }+e^{-j \frac{\pi}{2} k} </math>.
 +
 +
 +
== Question 3 ==
 +
Prove the time shifting property of the DFT.
 
----
 
----
 
== Discussion ==
 
== Discussion ==

Revision as of 05:21, 29 September 2014


Homework 5, ECE438, Fall 2014, Prof. Boutin

Hard copy due in class, Monday October 6, 2014.


Presentation Guidelines

  • Write only on one side of the paper.
  • Use a "clean" sheet of paper (e.g., not torn out of a spiral book).
  • Staple the pages together.
  • Include a cover page.
  • Do not let your dog play with your homework.

Questions 1

Compute the DFT of the following signals

a) $ x_1[n] = \left\{ \begin{array}{ll} 1, & n \text{ multiple of } N\\ 0, & \text{ else}. \end{array} \right. $

b) $ x_2[n]= e^{j \frac{\pi}{3} n } \cos ( \frac{\pi}{6} n ) $


c) $ x_3[n] =(\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}})^n $

Question 2

Compute the inverse DFT of $ X[k]= e^{j \pi k }+e^{-j \frac{\pi}{2} k} $.


Question 3

Prove the time shifting property of the DFT.


Discussion

You may discuss the homework below.

  • write comment/question here
    • answer will go here

Back to ECE438, Fall 2014, Prof. Boutin

Alumni Liaison

Recent Math PhD now doing a post-doctorate at UC Riverside.

Kuei-Nuan Lin