Line 30: Line 30:
 
----
 
----
 
(create a question page and put a link below)
 
(create a question page and put a link below)
==[[slecture_title_of_slecture_review|Questions and comments]]==
+
==[[Slecture_rep_comb_ECE438_Xiaozhe_review|Questions and comments]]==
  
If you have any questions, comments, etc. please post them on [[slecture_title_of_slecture_review|this page]].
+
If you have any questions, comments, etc. please post them on [[Slecture_rep_comb_ECE438_Xiaozhe_review|this page]].
 
----
 
----
 
[[2014_Fall_ECE_438_Boutin|Back to ECE438, Fall 2014]]
 
[[2014_Fall_ECE_438_Boutin|Back to ECE438, Fall 2014]]

Revision as of 04:32, 10 September 2014


Definition of Rep and Comb

A slecture by ECE student Xiaozhe Fan

Partly based on the ECE438 Fall 2014 lecture material of Prof. Mireille Boutin.



Post your slecture material here. Guidelines:

  • If you wish to post your slecture anonymously, please contact your instructor to get an anonymous login. Otherwise, you will be identifiable through your Purdue CAREER account, and thus you will NOT be anonymous.
  • Rephrase the material in your own way, in your own words, based on Prof. Boutin's lecture material.
  • Feel free to add your own examples or your own material.
  • Focus on the clarity of your explanation. It must be clear, easily understandable.
  • Type text using wikitext markup language. Do not post a pdf. Do not upload a word file.
  • Type all equations using latex code between <math> </math> tags.
  • You may include graphs, pictures, animated graphics, etc.
  • You may include links to other Project Rhea pages.

IMPORTANT: DO NOT PLAGIARIZE. If you use other material than Prof. Boutin's lecture material, you must cite your sources. Do not copy text word for word from another source; rephrase everything using your own words. Similarly for graphs, illustrations, pictures, etc. Make your own! Do not copy them from other sources.




(create a question page and put a link below)

Questions and comments

If you have any questions, comments, etc. please post them on this page.


Back to ECE438, Fall 2014

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett