(Periodic Functions)
m (Periodic Functions)
Line 5: Line 5:
 
As an example, we can use the function <math>x(n) = e^{\omega_0 j n}</math>.
 
As an example, we can use the function <math>x(n) = e^{\omega_0 j n}</math>.
 
To prove this, we do the following:
 
To prove this, we do the following:
 +
 
<font size="4">
 
<font size="4">
 
<math>x(n+N) = x(n)</math>
 
<math>x(n+N) = x(n)</math>
Line 12: Line 13:
  
  
<math>e^{\omega_0 j n} e^{2\pi j N} = e^{\omega_0 j n}</math>
+
<math>e^{\omega_0 j n} e^{\omega_0 j N} = e^{\omega_0 j n}</math>
  
  

Revision as of 10:55, 28 September 2008

Periodic Functions

The definition of a periodic function given in class is as follows: The function x(n) is periodic if and only if there exists an integer N such that x(n+N) = x(n). The value of N is called the "period".

As an example, we can use the function $ x(n) = e^{\omega_0 j n} $. To prove this, we do the following:

$ x(n+N) = x(n) $


$ e^{\omega_0 j (n+N)} = e^{\omega_0 j n} $


$ e^{\omega_0 j n} e^{\omega_0 j N} = e^{\omega_0 j n} $


$ e^{\omega_0 j N} = 1 $


$ \cos(\omega_0 N) + j\sin(\omega_0 N) = 1 $


---Which is true if:

$ \omega_0 N = k2\pi $ (where k is an integer)

---at some point.


This leads to the conclusion that if $ {\omega_0 \over 2\pi} = {k \over N} $

or, put another way, $ {\omega_0} \over {2\pi} $ is a rational number, then the function is periodic.

Put yet another way: if the equation is of the form $ e^{\omega_0 j n} $ and $ \omega_0 $ is made up of $ \pi $ and a rational component (contains no irrationals besides $ \pi $) then the function is periodic.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood