Line 109: Line 109:
 
<br>  
 
<br>  
  
<u>
+
<font color="red"><u>'''Shruthi Kubatur's comments on Solution 2:'''</u>  
 
+
<font color="red">'''Shruthi Kubatur's comments on Solution 2:'''</u>  
+
  
 
1. Probabilities are defined on events. So using curtly braces inside parentheses are necessary.  
 
1. Probabilities are defined on events. So using curtly braces inside parentheses are necessary.  

Revision as of 08:18, 15 August 2014


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2012



Jump to Problem 2,3


Problem 2

Problem: State and prove the Chebyshev inequality for random variable with mean μ and variance σ2. In constructing your proof, keep in mind that may be either a discrete or continuous random variable.


Problem premise: Let X be a continuous or discrete random variable with mean μ and variance σ2. Then, $ \forall \varepsilon >0 $, we have
$ P(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2} $

$ \color{blue}\text{Solution 1:} $
  • Continuous Case:

Let X be a random variable with mean μ and variance σ2

Consider two functions g1(x) and g2(x)

$ g_{1}(x)= 1_{\{x: \mid x-\mu\mid \geq \varepsilon\}}(x) $

$ g_{2}(x)=\frac{(x-\mu)^2}{\varepsilon^2} $

Clearly,

$ g_{2}(x)-g_{1}(x) \geq 0\; \; \forall x \in \mathbb {R} $

$ E[g_{2}(x)-g_{1}(x) ] \geq 0 \; \; \forall x \in \mathbb {R} $

Consider,

E[g2(x) − g1(x)] = E[g2(x)] − E[g1(x)]

where, $ E[g_{2}(x)]=E[\frac{(x-\mu)^2}{\varepsilon^2}] = \frac{1}{\varepsilon^2} var(X) = \frac{\sigma^2}{\varepsilon^2} $

and

$ E[g_{1}(x)] = P \{\mid x - \mu\mid \geq \varepsilon \} $

Thus we get,

$ \frac{\sigma^2}{\varepsilon^2} - P\{\mid X - \mu \mid \geq \varepsilon\} \geq 0 $

Therefore,

$ P\{\mid X - \mu \mid \geq \varepsilon\} \leq \frac{\sigma^2}{\varepsilon^2} $


  • Discrete Case:

The inequalities described above hold even if the x-axis is discretized. That is, if the random variable X is discrete. In other words, the discrete case is a proper subset of the continuous case in this problem. Thus, the Chebyshev inequality holds for discrete random variables.

$ {\color{red} \text{Basically, the whole proof is correct. But, there is a mistake in the following equation,}} $

$ {\color{red} E[g_{1}(x)] = P \{\mid x - \mu\mid \geq \varepsilon \} } $

$ {\color{red} \text{The probability measure } P( \cdot ) \text{ should evaluate on an event. Thus, I will rewrite this equation as follow}} $

$ {\color{red} E[g_{1}(x)] = P \left( \{x: |X(x) - \mu\mid \geq \varepsilon \} \right) } $

$ \color{blue}\text{Solution 2:} $
  • Discrete Case:

Let pX(x) be the pmf of X. The probability that X differs from μ by at least $ \varepsilon $ is

$ P(|X-\mu| \geq \varepsilon)= \sum_{x \in \{|X-\mu| \geq \varepsilon \} }p_{X}(x) $

Based on the definition of the variance, we have

σ2 = E[(XE[X])] = (x − μ)2pX(x)
x


Let a set $ A= \{ x|\,|x-\mu| \geq \varepsilon \} $. We have
$ \sigma^2 = \sum_{x}(x-\mu)^2 p_{X}(x)= \sum_{x \in A}(x-\mu)^2 p_{X}(x)+\sum_{x \notin A}(x-\mu)^2 p_{X}(x) $
$ \Rightarrow\sigma^2 \geq \sum_{x \in A}(x-\mu)^2 p_{X}(x) $
Since, in set A, we have $ |x-\mu| \geq \varepsilon $, we have
$ \Rightarrow\sigma^2 \geq \sum_{x \in A}\varepsilon^2 p_{X}(x)= \varepsilon^2 \sum_{x \in A}p_{X}(x)=\varepsilon^2 P(x \in A) =\varepsilon^2 P(|X-\mu| \geq \varepsilon) $
That is
$ P(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2} $

  • Continuous Case:

Let fX(x) be the pdf of X.
$ \sigma^2=\int_{-\infty}^{\infty}(x-\mu)^2f_{X}(x) \,dx \geq \int_{-\infty}^{\mu-\varepsilon}(x-\mu)^2f_{X}(x) \,dx+ \int_{\mu+\varepsilon}^{\infty}(x-\mu)^2f_{X}(x) \,dx $
The last inequality holds since we integrate a positive function. Since $ x \leq \mu-\varepsilon $ or $ x \geq \mu+\varepsilon $
$ \Rightarrow |x-\mu| \geq \varepsilon \Rightarrow (x-\mu)^2 \geq \varepsilon^2 $
Based on the above equation, we have
$ \sigma^2 \geq \int_{-\infty}^{\mu-\varepsilon}\varepsilon^2 f_{X}(x) \,dx+ \int_{\mu+\varepsilon}^{\infty} \varepsilon^2 f_{X}(x) \,dx $
$ = \varepsilon^2 \left( \int_{-\infty}^{\mu-\varepsilon}f_{X}(x) \,dx+ \int_{\mu+\varepsilon}^{\infty} f_{X}(x) \,dx \right) = \varepsilon^2 P \bigg( X \leq (\mu-\varepsilon)\, \text{or} \, X \geq (\mu+\varepsilon) \bigg) = \varepsilon^2 P(|X-\mu| \geq \varepsilon) $
$ \Rightarrow P(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2} $


Shruthi Kubatur's comments on Solution 2:

1. Probabilities are defined on events. So using curtly braces inside parentheses are necessary.

2. Variance formula is incorrect. The expectation argument is not squared.

3. Using ":" for "such that" is more standard and less ambiguous than using "|".


Related Problems


1. State and prove the Markov inequality for a nonnegative random variable X.

2. State and solve Chebyshev's inequality for an m-dimensional random vector. 


Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood