Line 7: Line 7:
 
----
 
----
  
<u>Cauchy's theorem:</u> Let f be analytic on a domain <math>\Omega</math>, and let <math>\gamma</math> be a nullhomologous, piecewise&nbsp;<math>C^1</math> curve in <math>\Omega</math>.&nbsp; Then  
+
<u>Cauchy's theorem:</u> Let f be analytic on a domain <span class="texhtml">Ω</span>, and let <span class="texhtml">γ</span> be a nullhomologous, piecewise&nbsp;<span class="texhtml">''C''<sup>1</sup></span> curve in <span class="texhtml">Ω</span>.&nbsp; Then<math>\int_\gamma f(z)\, dz =0</math>  
 
+
<math>\int_\gamma f(z)\, dz =0</math>
+
  
 
<br> [[2014 Summer MA 598C Weigel|Back to 2014 Summer MA 598C Weigel]]  
 
<br> [[2014 Summer MA 598C Weigel|Back to 2014 Summer MA 598C Weigel]]  
  
 
[[Category:2014_Summer_MA_598C_Weigel]]
 
[[Category:2014_Summer_MA_598C_Weigel]]

Revision as of 06:13, 5 August 2014


Really important results

Be able to state these perfectly, while taking a nap and juggling chainsaws.


Cauchy's theorem: Let f be analytic on a domain Ω, and let γ be a nullhomologous, piecewise C1 curve in Ω.  Then$ \int_\gamma f(z)\, dz =0 $


Back to 2014 Summer MA 598C Weigel

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett