(Division Example)
(Division Example)
Line 1: Line 1:
 +
== Addition/Subtraction Example ==
 +
<math>(2 + 3*i) + (23 - 15*i) = (23 + 2) + (3*i - 15*i) = 25 - 12*i</math>
 +
 +
<math>(-3 + \sqrt{-18}) + (7 - \sqrt{-8}) = (-3 + \sqrt{9 \times 2 \times -1}) + (7 - \sqrt{4 \times 2 \times -1}) = (-3 + 3\sqrt{2} \times i) + (7 - 2\sqrt{2} \times i) = 4 + \sqrt{2} \times i</math>
 +
 
== Division Example ==
 
== Division Example ==
 
<math>\frac{4}{2+3*i}</math> = <math>\frac{4}{2+3*i}\times\frac{2-3*i}{2-3*i}</math> = <math>\frac{8-12*i}{4+6*i-6*i-9i^2}</math> = <math>\frac{8}{13} - \frac{12}{13}\times i</math>
 
<math>\frac{4}{2+3*i}</math> = <math>\frac{4}{2+3*i}\times\frac{2-3*i}{2-3*i}</math> = <math>\frac{8-12*i}{4+6*i-6*i-9i^2}</math> = <math>\frac{8}{13} - \frac{12}{13}\times i</math>

Revision as of 04:42, 3 September 2008

Addition/Subtraction Example

$ (2 + 3*i) + (23 - 15*i) = (23 + 2) + (3*i - 15*i) = 25 - 12*i $

$ (-3 + \sqrt{-18}) + (7 - \sqrt{-8}) = (-3 + \sqrt{9 \times 2 \times -1}) + (7 - \sqrt{4 \times 2 \times -1}) = (-3 + 3\sqrt{2} \times i) + (7 - 2\sqrt{2} \times i) = 4 + \sqrt{2} \times i $

Division Example

$ \frac{4}{2+3*i} $ = $ \frac{4}{2+3*i}\times\frac{2-3*i}{2-3*i} $ = $ \frac{8-12*i}{4+6*i-6*i-9i^2} $ = $ \frac{8}{13} - \frac{12}{13}\times i $

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch