(→Energy) |
(→Energy) |
||
Line 4: | Line 4: | ||
<math>=\frac{\int_0^{2\pi}(1-cos(2t))dt}{2}</math><br> | <math>=\frac{\int_0^{2\pi}(1-cos(2t))dt}{2}</math><br> | ||
<math>=\frac{t-\frac{1}{2}sin(2t)}{2}|_{t=0}^{t=2\pi}</math><br> | <math>=\frac{t-\frac{1}{2}sin(2t)}{2}|_{t=0}^{t=2\pi}</math><br> | ||
− | <math>\frac{1}{2}(2\pi-0-0+0)</math> | + | <math>\frac{1}{2}(2\pi-0-0+0)</math><br> |
<math>\pi</math> | <math>\pi</math> |
Revision as of 18:30, 2 September 2008
x(t) = sin t
Energy
$ E=\int_0^{2\pi}{|sin(t)|^2dt} $
$ =\frac{\int_0^{2\pi}(1-cos(2t))dt}{2} $
$ =\frac{t-\frac{1}{2}sin(2t)}{2}|_{t=0}^{t=2\pi} $
$ \frac{1}{2}(2\pi-0-0+0) $
$ \pi $