(Energy)
(Energy)
Line 4: Line 4:
 
<math>=\frac{\int_0^{2\pi}(1-cos(2t))dt}{2}</math><br>
 
<math>=\frac{\int_0^{2\pi}(1-cos(2t))dt}{2}</math><br>
 
<math>=\frac{t-\frac{1}{2}sin(2t)}{2}|_{t=0}^{t=2\pi}</math><br>
 
<math>=\frac{t-\frac{1}{2}sin(2t)}{2}|_{t=0}^{t=2\pi}</math><br>
<math>\frac{1}{2}(2\pi-0-0+0)</math>(<br>
+
<math>\frac{1}{2}(2\pi-0-0+0)</math><br>
 
<math>\pi</math>
 
<math>\pi</math>

Revision as of 18:30, 2 September 2008

x(t) = sin t

Energy

$ E=\int_0^{2\pi}{|sin(t)|^2dt} $
$ =\frac{\int_0^{2\pi}(1-cos(2t))dt}{2} $
$ =\frac{t-\frac{1}{2}sin(2t)}{2}|_{t=0}^{t=2\pi} $
$ \frac{1}{2}(2\pi-0-0+0) $
$ \pi $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett