Line 2: Line 2:
 
   as an eigenvalue of the matrix A, and the corresponding non-zero vector <math>\vec{x}</math> is called an eigenvector of the matrix A. To determine eigenvalues and eigenvectors a characteristic equation <math>D(\lambda)=det\left(A-\lambda I\right)</math> is used. Here is an example of determining eigenvectors and eigenvalues where the matrix A is given by  
 
   as an eigenvalue of the matrix A, and the corresponding non-zero vector <math>\vec{x}</math> is called an eigenvector of the matrix A. To determine eigenvalues and eigenvectors a characteristic equation <math>D(\lambda)=det\left(A-\lambda I\right)</math> is used. Here is an example of determining eigenvectors and eigenvalues where the matrix A is given by  
  
<math><center>A=\left[\begin{matrix}-5 & 2\\
+
<center><math>A=\left[\begin{matrix}-5 & 2\\
 
2 & -2
 
2 & -2
\end{matrix}\right]<center></math>.
+
\end{matrix}\right]</math></center>.
  
 
  Then the characteristic equation D(\lambda)=\left(-5-\lambda\right)\left(-2-\lambda\right)-4=\lambda^{2}+7\lambda+6=0.
 
  Then the characteristic equation D(\lambda)=\left(-5-\lambda\right)\left(-2-\lambda\right)-4=\lambda^{2}+7\lambda+6=0.

Revision as of 11:33, 29 April 2014

Let define a n-by-n matrix A and a non-zero vector $ \vec{x}\in\mathbb{R}^{n} $. If there exists a scalar value $ \lambda $ which satisfies the vector equation $ A\vec{x}=\lambda\vec{x} $, we define $ \lambda $

 as an eigenvalue of the matrix A, and the corresponding non-zero vector $ \vec{x} $ is called an eigenvector of the matrix A. To determine eigenvalues and eigenvectors a characteristic equation $ D(\lambda)=det\left(A-\lambda I\right) $ is used. Here is an example of determining eigenvectors and eigenvalues where the matrix A is given by 
$ A=\left[\begin{matrix}-5 & 2\\ 2 & -2 \end{matrix}\right] $
.
Then the characteristic equation D(\lambda)=\left(-5-\lambda\right)\left(-2-\lambda\right)-4=\lambda^{2}+7\lambda+6=0.
 By solving the quadratic equation for \lambda
, we will have two eigenvalues \lambda_{1}=-1
 and \lambda_{2}=-6
. By substituting \lambda's
 into Eq [eq:1]

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva