Line 1: Line 1:
[[Category:ECE]]
+
<br>
[[Category:QE]]
+
[[Category:CNSIP]]
+
[[Category:problem solving]]
+
[[Category:random variables]]
+
[[Category:probability]]
+
 
+
 
<center>
 
<center>
<font size= 4>
+
<font size="4">[[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] </font>  
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
+
</font size>
+
  
<font size= 4>
+
<font size="4">Communication, Networking, Signal and Image Processing (CS)</font>
Communication, Networking, Signal and Image Processing (CS)
+
  
Question 1: Probability and Random Processes
+
<font size="4">Question 1: Probability and Random Processes </font>  
</font size>
+
  
August 2012
+
August 2012  
</center>
+
</center>  
 
----
 
----
 +
 
----
 
----
Jump to [[ECE-QE_CS1-2012_solusion-1|Problem 2]],[[ECE-QE CS1-2012 solusion-2|3]]
+
 
 +
Jump to [[ECE-QE CS1-2012 solusion-1|Problem 2]],[[ECE-QE CS1-2012 solusion-2|3]]  
 +
 
 
----
 
----
=Problem 3=
+
 
 +
= Problem 3 =
 +
 
 +
===== Problem statement:&nbsp; =====
 +
 
 +
<br> Let <math>\mathbf{X}_{1} \dots \mathbf{X}_{n} \dots </math> be a sequence of independent, identical distributed random variables, each uniformly distributed on the interval [0, 1], an hence having pdf <br> <math>f_{X}\left(x\right)=\begin{cases}
 +
\begin{array}{lll}
 +
1,    \text{      for }  0 \leq x \leq1\\
 +
0,  \text{      elsewhere. }
 +
\end{array}\end{cases}</math> <br>
 +
 
 +
Let <math>\mathbf{Y}_{n}</math> be a new random variable defined by <br>
 +
 
 +
<math>\mathbf{Y}_{n} = min \,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \}</math>
 +
 
 +
<br>
 +
 
 +
'''(a)''' Find the pdf of <math>\mathbf{Y}_{n}</math>.
 +
 
 +
'''(b)''' Does the sequence <math>\mathbf{Y}_{n}</math> converge in probability?
 +
 
 +
'''(c)''' Does the sequence <math>\mathbf{Y}_{n}</math> converge in distribution? If yes, specify the cumulative function of the random variable it converges to.
 +
 
 +
<br>
 +
 
 +
=====  =====
  
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
Line 34: Line 52:
 
         \end{array}
 
         \end{array}
 
     \right.
 
     \right.
</math>
+
</math>  
  
<math> F_{X}(x) = \int_0^x f_{X}(\alpha)d\alpha = \int_0^x d\alpha = x </math>
+
<math> F_{X}(x) = \int_0^x f_{X}(\alpha)d\alpha = \int_0^x d\alpha = x </math>  
  
<math> Y_{n} = min\{X_{1}, ...., X_{n}\} </math>
+
<span class="texhtml">''Y''<sub>''n''</sub> = ''m''''i''''n''{''X''<sub>1</sub>,....,''X''<sub>''n''</sub>}</span>  
  
 
'''(a)''' <br>  
 
'''(a)''' <br>  
  
<math>\; \; \; F_{Y_{n}}(y) = P(\{Y \leq y\}) </math> <br>
+
<math>\; \; \; F_{Y_{n}}(y) = P(\{Y \leq y\}) </math> <br> <math> = P(\{min\{X_{1}, ..., X_{n}\} \leq y\}) </math> <br>  
<math> = P(\{min\{X_{1}, ..., X_{n}\} \leq y\}) </math> <br>
+
  
<math> = 1 - P(\{X_{1} > y\}, ...., \{X_{n} > y\}) </math> <br>
+
<span class="texhtml"> = 1 − ''P''({''X''<sub>1</sub> &gt; ''y''},....,{''X''<sub>''n''</sub> &gt; ''y''})</span> <br>  
  
<math> = 1 - P(\{X_{1} > y\})P(\{X_{2} > y\})...P(\{X_{n} > y\}) </math> <br>
+
<span class="texhtml"> = 1 − ''P''({''X''<sub>1</sub> &gt; ''y''})''P''({''X''<sub>2</sub> &gt; ''y''})...''P''({''X''<sub>''n''</sub> &gt; ''y''})</span> <br>  
  
<math> = 1 - (1-y)^{n} </math>
+
<span class="texhtml"> = 1 (1 − ''y'')<sup>''n''</sup></span>  
  
 +
<br> <math> f_{Y_{n}}(y) = \frac{dF_{Y}(y)}{dy} = n(1-y)^{n-1}  1_{[0, 1]}(y) </math>
  
<math> f_{Y_{n}}(y) = \frac{dF_{Y}(y)}{dy} = n(1-y)^{n-1}  1_{[0, 1]}(y) </math>
+
<br> '''(b)''' <br>  
  
 
+
Yes. It converges in probability.  
'''(b)''' <br>
+
 
+
Yes. It converges in probability.
+
  
 
A random variable converges in probability if  
 
A random variable converges in probability if  
  
<math>P\{\mid Y_{n} - a \mid > \varepsilon\} \rightarrow 0 \;\; as \; n \rightarrow \inf \;\; for \;any\; \varepsilon > 0 </math>
+
<math>P\{\mid Y_{n} - a \mid > \varepsilon\} \rightarrow 0 \;\; as \; n \rightarrow \inf \;\; for \;any\; \varepsilon > 0 </math>  
 
+
Then the random variable is said to converge to a.
+
  
Consider
+
Then the random variable is said to converge to a.
  
<math>P\{\mid Y_{n}-0 \mid > \varepsilon\} = P\{Y_{n}>\varepsilon\}  </math>
+
Consider
  
<math>= 1 - P\{Y_{n} \leq \varepsilon\} = 1 - [1-(1-\varepsilon)^n] = (1-\varepsilon)^n</math>
+
<math>P\{\mid Y_{n}-0 \mid > \varepsilon\} = P\{Y_{n}>\varepsilon\}  </math>  
  
 +
<math>= 1 - P\{Y_{n} \leq \varepsilon\} = 1 - [1-(1-\varepsilon)^n] = (1-\varepsilon)^n</math>
  
<math> As\; n\rightarrow \inf \; \; \; P\{\mid Y_{n}-0 \mid > \varepsilon\} = 0 </math>
+
<br> <math> As\; n\rightarrow \inf \; \; \; P\{\mid Y_{n}-0 \mid > \varepsilon\} = 0 </math>  
  
Since
+
Since <math> 0 < (1-\varepsilon) <1</math>  
<math> 0 < (1-\varepsilon) <1</math>
+
  
Thus
+
Thus <math>Y_{n} \rightarrow 0</math>  
<math>Y_{n} \rightarrow 0</math>
+
  
 +
<br> '''(c)''' <br>
  
'''(c)''' <br>
+
From the solution to (a), we have  
 
+
From the solution to (a), we have
+
  
 
<math>
 
<math>
Line 92: Line 103:
 
         \end{array}
 
         \end{array}
 
     \right.
 
     \right.
</math>
+
</math>  
 
+
It converges in distribution since:<br> <math>convergence(probability) \Rightarrow convergence(distribution) </math>
+
  
 +
It converges in distribution since:<br> <math>convergence(probability) \Rightarrow convergence(distribution) </math>
  
To find the convergence of CDF, <br>
+
<br> To find the convergence of CDF, <br> <math> \lim_{n \to \infty} F_{Y_{n}}(y)  
<math> \lim_{n \to \infty} F_{Y_{n}}(y)  
+
  
 
= \lim_{n \to \infty} 1 - (1-y)^{n} = \left\{
 
= \lim_{n \to \infty} 1 - (1-y)^{n} = \left\{
Line 105: Line 114:
 
           1 & \quad y > 0
 
           1 & \quad y > 0
 
         \end{array}
 
         \end{array}
     \right. </math>
+
     \right. </math>  
  
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{*For part (a), there is a typo for the following equation}}</math></span></font><br>
+
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{*For part (a), there is a typo for the following equation}}</math></span></font><br>  
  
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} F_{Y_{n}}(y) = P(\{Y \leq y\}) = P(min\{X_{1}, \dots, X_{n}\} \leq y) \text{, and should be changed to} }</math></span></font><br>
+
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} F_{Y_{n}}(y) = P(\{Y \leq y\}) = P(min\{X_{1}, \dots, X_{n}\} \leq y) \text{, and should be changed to} }</math></span></font><br>  
  
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} F_{Y_{n}}(y) = P(\{Y_{n} \leq y\}) = P(min\{X_{1}, \dots, X_{n}\} \leq y) }</math></span></font><br>
+
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} F_{Y_{n}}(y) = P(\{Y_{n} \leq y\}) = P(min\{X_{1}, \dots, X_{n}\} \leq y) }</math></span></font><br>  
  
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{*For part (b), I would like to add some additional parts to the following equation for better understanding}}</math></span></font><br>
+
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{*For part (b), I would like to add some additional parts to the following equation for better understanding}}</math></span></font><br>  
  
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} n\rightarrow \inf \; \; \; P\{\mid Y_{n}-0 \mid > \varepsilon\} = 0}</math></span></font><br>
+
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} n\rightarrow \inf \; \; \; P\{\mid Y_{n}-0 \mid > \varepsilon\} = 0}</math></span></font><br>  
  
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{Since } 0 < (1-\varepsilon) <1}</math></span></font><br>
+
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{Since } 0 < (1-\varepsilon) <1}</math></span></font><br>  
  
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{to }}</math></span></font><br>
+
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{to }}</math></span></font><br>  
  
<font face="serif"><span style="font-size: 19px;"><math>{\color{red}\text{Since } 0 < (1-\varepsilon) <1 \text{, as } n\rightarrow \infty \Rightarrow \lim_{n \to \infty}(1-\varepsilon)^n = 0 \; \; \; \therefore \lim_{n \to \infty}P\{\mid Y_{n}-0 \mid > \varepsilon\} = \lim_{n \to \infty} (1-\varepsilon)^n =  0}</math></span></font><br>
+
<font face="serif"><span style="font-size: 19px;"><math>{\color{red}\text{Since } 0 < (1-\varepsilon) <1 \text{, as } n\rightarrow \infty \Rightarrow \lim_{n \to \infty}(1-\varepsilon)^n = 0 \; \; \; \therefore \lim_{n \to \infty}P\{\mid Y_{n}-0 \mid > \varepsilon\} = \lim_{n \to \infty} (1-\varepsilon)^n =  0}</math></span></font><br>
 +
 
 +
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{*For part (c), the CDF of the random variable } \mathbf{Y}_n \text{ is incorrect. It should be}}</math></span></font><br>  
  
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{*For part (c), the CDF of the random variable } \mathbf{Y}_n \text{ is incorrect. It should be}}</math></span></font><br>
 
 
 
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} F_{Y_n}\left(y\right)=\begin{cases}  
 
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} F_{Y_n}\left(y\right)=\begin{cases}  
 
\begin{array}{lll}
 
\begin{array}{lll}
Line 130: Line 139:
 
1-(1-y)^n, 0 \leq y \leq 1 \\
 
1-(1-y)^n, 0 \leq y \leq 1 \\
 
1,  y>1
 
1,  y>1
\end{array}\end{cases} }</math></span></font><br>
+
\end{array}\end{cases} }</math></span></font><br>  
  
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{Therefore, it should be modified as follow}}</math></span></font><br>
+
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{Therefore, it should be modified as follow}}</math></span></font><br>  
  
 
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{As } n \to \infty \text{,} \,\, F_{Y_n}(y) \to F_{Y}(y)=\begin{cases}  
 
<font face="serif"><span style="font-size: 19px;"><math>{\color{red} \text{As } n \to \infty \text{,} \,\, F_{Y_n}(y) \to F_{Y}(y)=\begin{cases}  
Line 138: Line 147:
 
0,    y <0 \\
 
0,    y <0 \\
 
1,  y \geq 0
 
1,  y \geq 0
\end{array}\end{cases} }</math></span></font><br>
+
\end{array}\end{cases} }</math></span></font><br>  
  
 
===== <math>\color{blue}\text{Solution 2:}</math>  =====
 
===== <math>\color{blue}\text{Solution 2:}</math>  =====
'''(a)'''
 
<br>
 
Since <math class="inline">\mathbf{Y}_{n} = min \,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \}</math>, and <math class="inline"> \{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} </math> are i.i.d R.V. 
 
<br>
 
We can have the CDF of <math class="inline">\mathbf{Y}_{n}</math>
 
<br>
 
<math> P(\mathbf{Y}_{n} \leq y) = P(\,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} \leq y) </math> <br>
 
<math> = 1-P(\,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} > y)</math><br>
 
<math> = 1-P(\mathbf{X}_1 > y)P(\mathbf{X}_2 > y) \dots P(\mathbf{X}_n > y)</math><br>
 
<math> = 1-(1-F_{X_1}(y))(1-F_{X_2}(y)) \dots (1-F_{X_n}(y))=1-(1-F_{X_1}(y))^n</math><br>
 
  
Since <math class="inline">\mathbf{Y}_{n} </math> is also uniform distributed on the interval [0,1] <br>
+
'''(a)''' <br> Since <math>\mathbf{Y}_{n} = min \,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \}</math>, and <math> \{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} </math> are i.i.d R.V. <br> We can have the CDF of <math>\mathbf{Y}_{n}</math> <br> <math> P(\mathbf{Y}_{n} \leq y) = P(\,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} \leq y) </math> <br> <math> = 1-P(\,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} > y)</math><br> <math> = 1-P(\mathbf{X}_1 > y)P(\mathbf{X}_2 > y) \dots P(\mathbf{X}_n > y)</math><br> <math> = 1-(1-F_{X_1}(y))(1-F_{X_2}(y)) \dots (1-F_{X_n}(y))=1-(1-F_{X_1}(y))^n</math><br>
When <math class="inline"> Y_n = y < 0 </math>, <math class="inline">P(\{\mathbf{Y}_{n}<0 \}) =0 </math>   since <math class="inline">F_{X_1}(y) =0 </math><br>
+
 
When <math class="inline"> Y_n = y > 1 </math>, <math class="inline">P(\{\mathbf{Y}_{n}>1 \}) =1 </math>   since <math class="inline">F_{X_1}(y) =1 </math><br>
+
Since <math>\mathbf{Y}_{n} </math> is also uniform distributed on the interval [0,1] <br> When <span class="texhtml">''Y''<sub>''n''</sub> = ''y'' &lt; 0</span>, <math>P(\{\mathbf{Y}_{n}<0 \}) =0 </math> since <math>F_{X_1}(y) =0 </math><br> When <span class="texhtml">''Y''<sub>''n''</sub> = ''y'' &gt; 1</span>, <math>P(\{\mathbf{Y}_{n}>1 \}) =1 </math> since <math>F_{X_1}(y) =1 </math><br> When <math> 0 \leq Y_n = y \leq 1 </math><br>  
When <math class="inline"> 0 \leq Y_n = y \leq 1 </math><br>
+
  
<math> F_{X_1}(y)= \int_{0}^{y}f_{X_1}(x)\,dx=\int_{0}^{y}\, 1 \, dx = y</math><br>
+
<math> F_{X_1}(y)= \int_{0}^{y}f_{X_1}(x)\,dx=\int_{0}^{y}\, 1 \, dx = y</math><br>  
  
Thus, the CDF of <math class="inline">\mathbf{Y}_{n}</math> is the following <br>
+
Thus, the CDF of <math>\mathbf{Y}_{n}</math> is the following <br> <math>F_{Y_n}\left(y\right)=\begin{cases}
<math class="inline">F_{Y_n}\left(y\right)=\begin{cases}
+
 
\begin{array}{lll}
 
\begin{array}{lll}
 
0,    y <0 \\
 
0,    y <0 \\
 
1-(1-y)^n, 0 \leq y \leq 1 \\
 
1-(1-y)^n, 0 \leq y \leq 1 \\
 
1,  y>1
 
1,  y>1
\end{array}\end{cases}</math><br>
+
\end{array}\end{cases}</math><br> Thus, the pdf of <math>\mathbf{Y}_{n}</math> is <br> <math>f_{Y_n}\left(y\right)=\begin{cases}
Thus, the pdf of <math class="inline">\mathbf{Y}_{n}</math> is
+
<br>
+
<math class="inline">f_{Y_n}\left(y\right)=\begin{cases}
+
 
\begin{array}{lll}
 
\begin{array}{lll}
 
n(1-y)^{n-1},  0 \leq y \leq 1 \\
 
n(1-y)^{n-1},  0 \leq y \leq 1 \\
 
0,  \,\,\, \text{elsewhere}
 
0,  \,\,\, \text{elsewhere}
\end{array}\end{cases}</math>
+
\end{array}\end{cases}</math> <br>  
<br>
+
  
 +
<br> '''(b)'''<br> Let <span class="texhtml">μ = ''E''[''Y''<sub>''n''</sub>]</span> and <span class="texhtml">σ<sup>2</sup> = ''E''( | ''Y''<sub>''n''</sub> − μ | <sup>2</sup>)</span>. By Chebyshev inequality, we have <br> <math> P(|\mathbf{Y}_{n}-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2} = \frac{E[|\mathbf{Y}_{n}-\mu|^2]}{\varepsilon^2}</math><br> Now, we examine <br> <math> E[|\mathbf{Y}_{n}-\mu|^2] = E[Y_n^2-2 \mu Y_n+\mu^2] = E[Y_n^2]-2\mu E[Y_n]+\mu^2=E[Y_n^2]-\mu^2.</math><br>
  
'''(b)'''<br>
+
In problem (a), we have the pdf of <span class="texhtml">''Y''<sub>''n''</sub></span>, we can find <span class="texhtml">''E''[''Y''<sub>''n''</sub>]</span> and <math>E[Y_n^2]</math> <br> <math> E[Y_n] = \int_{0}^{1}y f_{Y_n}(y) \,dy = \int_{0}^{1} y n(1-y)^{n-1} \, dy = \frac{1}{n+1}</math><br> <math> E[Y_n^2] = \int_{0}^{1}y^2 f_{Y_n}(y) \,dy = \int_{0}^{1} y^2 n(1-y)^{n-1} \, dy = \frac{2}{n^2+3n+2}</math> <br> As <math>n \to \infty</math><br> <math> \lim_{n \to \infty} E[|\mathbf{Y}_{n}-\mu|^2] = \lim_{n \to \infty} \left( E[Y_n^2]-(E[Y_n])^2 \right)= \lim_{n \to \infty}\left( \frac{2}{n^2+3n+2}- (\frac{1}{n+1})^2\right)=0</math><br> <math>\Rightarrow P(|\mathbf{Y}_{n}-\mu| \geq \varepsilon) \leq \frac{E[|\mathbf{Y}_{n}-\mu|^2]}{\varepsilon^2} = 0 \,\,\text{as} \,n \to \infty</math><br> Thus, the sequence <span class="texhtml">''Y''<sub>''n''</sub></span> converges in probability to <span class="texhtml">μ</span> for any <math>\varepsilon>0 </math>, and <br> <math> \lim_{n \to \infty} \mu = \lim_{n \to \infty} E[Y_{n}] = \lim_{n \to \infty} \frac{1}{n+1} =0 </math><br> <math> \therefore P(|\mathbf{Y}_{n}-\mu| \geq \varepsilon) = P(|\mathbf{Y}_{n}-0| \geq \varepsilon)  \to 0  \,\,\text{as} \,\, n \to \infty</math><br>  
Let <math class="inline">\mu=E[Y_n]</math> and <math class="inline">\sigma^2=E(|Y_n-\mu|^2)</math>. By Chebyshev inequality, we have
+
<br>
+
<math> P(|\mathbf{Y}_{n}-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2} = \frac{E[|\mathbf{Y}_{n}-\mu|^2]}{\varepsilon^2}</math><br>
+
Now, we examine
+
<br>
+
<math> E[|\mathbf{Y}_{n}-\mu|^2] = E[Y_n^2-2 \mu Y_n+\mu^2] = E[Y_n^2]-2\mu E[Y_n]+\mu^2=E[Y_n^2]-\mu^2.</math><br>
+
  
In problem (a), we have the pdf of <math class="inline">Y_n</math>, we can find <math class="inline">E[Y_n]</math> and <math class="inline">E[Y_n^2]</math>
+
'''(c)'''<br> The CDF of <span class="texhtml">''Y''<sub>''n''</sub></span><br> <math>F_{Y_n}\left(y\right)=\begin{cases}
<br>
+
<math> E[Y_n] = \int_{0}^{1}y f_{Y_n}(y) \,dy = \int_{0}^{1} y n(1-y)^{n-1} \, dy = \frac{1}{n+1}</math><br>
+
<math> E[Y_n^2] = \int_{0}^{1}y^2 f_{Y_n}(y) \,dy = \int_{0}^{1} y^2 n(1-y)^{n-1} \, dy = \frac{2}{n^2+3n+2}</math>
+
<br>
+
As <math class="inline">n \to \infty</math><br>
+
<math> \lim_{n \to \infty} E[|\mathbf{Y}_{n}-\mu|^2] = \lim_{n \to \infty} \left( E[Y_n^2]-(E[Y_n])^2 \right)= \lim_{n \to \infty}\left( \frac{2}{n^2+3n+2}- (\frac{1}{n+1})^2\right)=0</math><br>
+
<math>\Rightarrow P(|\mathbf{Y}_{n}-\mu| \geq \varepsilon) \leq \frac{E[|\mathbf{Y}_{n}-\mu|^2]}{\varepsilon^2} = 0 \,\,\text{as} \,n \to \infty</math><br>
+
Thus, the sequence <math class="inline">Y_n </math> converges in probability to <math class="inline">\mu </math> for any <math class="inline">\varepsilon>0 </math>, and <br>
+
<math> \lim_{n \to \infty} \mu = \lim_{n \to \infty} E[Y_{n}] = \lim_{n \to \infty} \frac{1}{n+1} =0 </math><br>
+
<math> \therefore P(|\mathbf{Y}_{n}-\mu| \geq \varepsilon) = P(|\mathbf{Y}_{n}-0| \geq \varepsilon)  \to 0  \,\,\text{as} \,\, n \to \infty</math><br>
+
 
+
'''(c)'''<br>
+
The CDF of <math class="inline">Y_n</math><br>
+
<math class="inline">F_{Y_n}\left(y\right)=\begin{cases}
+
 
\begin{array}{lll}
 
\begin{array}{lll}
 
0,    y <0 \\
 
0,    y <0 \\
 
1-(1-y)^n, 0 \leq y \leq 1 \\
 
1-(1-y)^n, 0 \leq y \leq 1 \\
 
1,  y>1
 
1,  y>1
\end{array}\end{cases}</math><br>
+
\end{array}\end{cases}</math><br>  
  
As <math class="inline">n \to \infty</math><br>
+
As <math>n \to \infty</math><br> <math> F_{Y_n}(y) \to F_{Y}(y)= \begin{cases}
<math> F_{Y_n}(y) \to F_{Y}(y)= \begin{cases}
+
 
\begin{array}{lll}
 
\begin{array}{lll}
 
0,  \,\,  y <0 \\
 
0,  \,\,  y <0 \\
 
1,  \,\, y \geq 0
 
1,  \,\, y \geq 0
\end{array}\end{cases}</math><br>
+
\end{array}\end{cases}</math><br> where <math>1-(1-y)^n \to 1</math> as <math>n \to \infty</math>, when <span class="texhtml">0 &lt; ''y'' &lt; 1</span><br> Because <span class="texhtml">0 &lt; (1 − ''y'') &lt; 1</span>, <math>(1-y)^n \to 0</math>, when <math>n \to \infty</math><br> <math> F_{Y}(y)= \begin{cases}
where <math class="inline">1-(1-y)^n \to 1</math> as <math class="inline">n \to \infty</math>, when <math class="inline">0 <y<1 </math><br>
+
Because <math class="inline">0 < (1-y) <1</math>, <math class="inline">(1-y)^n \to 0</math>, when <math class="inline">n \to \infty</math><br>
+
<math> F_{Y}(y)= \begin{cases}
+
 
\begin{array}{lll}
 
\begin{array}{lll}
 
0,  \,\,  y <0 \\
 
0,  \,\,  y <0 \\
 
1,  \,\, y \geq 0
 
1,  \,\, y \geq 0
\end{array}\end{cases}</math><br>
+
\end{array}\end{cases}</math><br> where this CDF is a step function.<br>  
where this CDF is a step function.<br>
+
  
Thus, the sequence of random variable <math class="inline">{Y_n}</math> with cumulative distribution function <math class="inline">F_{Y_n}(y)</math> converges in distribution to the random variable <math class="inline">Y</math> with cumulative distribution function <math class="inline">F_{Y}(y)</math>, which is a step function.
+
Thus, the sequence of random variable <span class="texhtml">''Y''<sub>''n''</sub></span> with cumulative distribution function <math>F_{Y_n}(y)</math> converges in distribution to the random variable <span class="texhtml">''Y''</span> with cumulative distribution function <span class="texhtml">''F''<sub>''Y''</sub>(''y'')</span>, which is a step function.  
 +
 
 +
 
 +
 
 +
<font color = "red">'''<u>Comments on Solution 2:</u>'''
 +
 
 +
1. Curly braces are required to take probabilities on events.
 +
 
 +
2. Error in part (c): As n grows to infinity, 1 - (1-y)<sup>n</sup>&nbsp;is definitely not equal to 1, for y = 0. Technically, that would lead to an indeterminate value at y = 0, or can be thought of to be 0 (as engineering common practice).<sup></sup>
 +
 
 +
</font>
 +
 
 +
=== Related Problems ===
  
===Related Problem===
 
 
----
 
----
  
1. Let <math> X_{n}</math> be a sequence of independent, identical distributed random variables, each has Cauchy pdf<br>
+
1. Let <span class="texhtml">''X''<sub>''n''</sub></span> be a sequence of independent, identical distributed random variables, each has Cauchy pdf<br> <math> f(x)=\frac{1}{\pi (1+x^2)} \text{, } -\infty < x < \infty </math><br>  
<math> f(x)=\frac{1}{\pi (1+x^2)} \text{, } -\infty < x < \infty </math><br>
+
  
Let <math>Y_{n}</math> a new random variable defined by<br>
+
Let <span class="texhtml">''Y''<sub>''n''</sub></span> a new random variable defined by<br> <math> Y_{n} = \frac{1}{n} \sum_{i=1}^{n} \,  X_{i} </math><br>  
<math> Y_{n} = \frac{1}{n} \sum_{i=1}^{n} \,  X_{i} </math><br>
+
  
'''(a)''' Find the pdf of the sequence <math>Y_n</math>, and describe how it depends on n.
+
'''(a)''' Find the pdf of the sequence <span class="texhtml">''Y''<sub>''n''</sub></span>, and describe how it depends on n.  
+
'''(b)''' Does the sequence <math>\mathbf{Y}_{n}</math> converge in distribution?
+
  
'''(c)''' If yes, what is the distribution of the random variable it converges to?
+
'''(b)''' Does the sequence <math>\mathbf{Y}_{n}</math> converge in distribution?
 +
 
 +
'''(c)''' If yes, what is the distribution of the random variable it converges to?  
 +
 
 +
 
 +
 
 +
2.&nbsp;
  
 
----
 
----
 +
 +
[[Category:ECE]] [[Category:QE]] [[Category:CNSIP]] [[Category:Problem_solving]] [[Category:Random_variables]] [[Category:Probability]]

Revision as of 08:46, 15 August 2014


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2012



Jump to Problem 2,3


Problem 3

Problem statement: 


Let $ \mathbf{X}_{1} \dots \mathbf{X}_{n} \dots $ be a sequence of independent, identical distributed random variables, each uniformly distributed on the interval [0, 1], an hence having pdf
$ f_{X}\left(x\right)=\begin{cases} \begin{array}{lll} 1, \text{ for } 0 \leq x \leq1\\ 0, \text{ elsewhere. } \end{array}\end{cases} $

Let $ \mathbf{Y}_{n} $ be a new random variable defined by

$ \mathbf{Y}_{n} = min \,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} $


(a) Find the pdf of $ \mathbf{Y}_{n} $.

(b) Does the sequence $ \mathbf{Y}_{n} $ converge in probability?

(c) Does the sequence $ \mathbf{Y}_{n} $ converge in distribution? If yes, specify the cumulative function of the random variable it converges to.


$ \color{blue}\text{Solution 1:} $

$ f_{X}(x) = 1_{[0,1]}(x) = \left\{ \begin{array}{ll} 1 & \quad 0 \leq x \leq 1 \\ 0 & \quad elsewhere \end{array} \right. $

$ F_{X}(x) = \int_0^x f_{X}(\alpha)d\alpha = \int_0^x d\alpha = x $

Yn = m'i'n{X1,....,Xn}

(a)

$ \; \; \; F_{Y_{n}}(y) = P(\{Y \leq y\}) $
$ = P(\{min\{X_{1}, ..., X_{n}\} \leq y\}) $

= 1 − P({X1 > y},....,{Xn > y})

= 1 − P({X1 > y})P({X2 > y})...P({Xn > y})

= 1 − (1 − y)n


$ f_{Y_{n}}(y) = \frac{dF_{Y}(y)}{dy} = n(1-y)^{n-1} 1_{[0, 1]}(y) $


(b)

Yes. It converges in probability.

A random variable converges in probability if

$ P\{\mid Y_{n} - a \mid > \varepsilon\} \rightarrow 0 \;\; as \; n \rightarrow \inf \;\; for \;any\; \varepsilon > 0 $

Then the random variable is said to converge to a.

Consider

$ P\{\mid Y_{n}-0 \mid > \varepsilon\} = P\{Y_{n}>\varepsilon\} $

$ = 1 - P\{Y_{n} \leq \varepsilon\} = 1 - [1-(1-\varepsilon)^n] = (1-\varepsilon)^n $


$ As\; n\rightarrow \inf \; \; \; P\{\mid Y_{n}-0 \mid > \varepsilon\} = 0 $

Since $ 0 < (1-\varepsilon) <1 $

Thus $ Y_{n} \rightarrow 0 $


(c)

From the solution to (a), we have

$ F_{Y_{n}}(y) = \left\{ \begin{array}{ll} 1 - (1-y)^{n} & \quad 0 < y \leq 1 \\ 1 & \quad y > 1 \end{array} \right. $

It converges in distribution since:
$ convergence(probability) \Rightarrow convergence(distribution) $


To find the convergence of CDF,
$ \lim_{n \to \infty} F_{Y_{n}}(y) = \lim_{n \to \infty} 1 - (1-y)^{n} = \left\{ \begin{array}{ll} 0 & \quad y \leq 0 \\ 1 & \quad y > 0 \end{array} \right. $

$ {\color{red} \text{*For part (a), there is a typo for the following equation}} $

$ {\color{red} F_{Y_{n}}(y) = P(\{Y \leq y\}) = P(min\{X_{1}, \dots, X_{n}\} \leq y) \text{, and should be changed to} } $

$ {\color{red} F_{Y_{n}}(y) = P(\{Y_{n} \leq y\}) = P(min\{X_{1}, \dots, X_{n}\} \leq y) } $

$ {\color{red} \text{*For part (b), I would like to add some additional parts to the following equation for better understanding}} $

$ {\color{red} n\rightarrow \inf \; \; \; P\{\mid Y_{n}-0 \mid > \varepsilon\} = 0} $

$ {\color{red} \text{Since } 0 < (1-\varepsilon) <1} $

$ {\color{red} \text{to }} $

$ {\color{red}\text{Since } 0 < (1-\varepsilon) <1 \text{, as } n\rightarrow \infty \Rightarrow \lim_{n \to \infty}(1-\varepsilon)^n = 0 \; \; \; \therefore \lim_{n \to \infty}P\{\mid Y_{n}-0 \mid > \varepsilon\} = \lim_{n \to \infty} (1-\varepsilon)^n = 0} $

$ {\color{red} \text{*For part (c), the CDF of the random variable } \mathbf{Y}_n \text{ is incorrect. It should be}} $

$ {\color{red} F_{Y_n}\left(y\right)=\begin{cases} \begin{array}{lll} 0, y <0 \\ 1-(1-y)^n, 0 \leq y \leq 1 \\ 1, y>1 \end{array}\end{cases} } $

$ {\color{red} \text{Therefore, it should be modified as follow}} $

$ {\color{red} \text{As } n \to \infty \text{,} \,\, F_{Y_n}(y) \to F_{Y}(y)=\begin{cases} \begin{array}{lll} 0, y <0 \\ 1, y \geq 0 \end{array}\end{cases} } $

$ \color{blue}\text{Solution 2:} $

(a)
Since $ \mathbf{Y}_{n} = min \,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} $, and $ \{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} $ are i.i.d R.V.
We can have the CDF of $ \mathbf{Y}_{n} $
$ P(\mathbf{Y}_{n} \leq y) = P(\,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} \leq y) $
$ = 1-P(\,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} > y) $
$ = 1-P(\mathbf{X}_1 > y)P(\mathbf{X}_2 > y) \dots P(\mathbf{X}_n > y) $
$ = 1-(1-F_{X_1}(y))(1-F_{X_2}(y)) \dots (1-F_{X_n}(y))=1-(1-F_{X_1}(y))^n $

Since $ \mathbf{Y}_{n} $ is also uniform distributed on the interval [0,1]
When Yn = y < 0, $ P(\{\mathbf{Y}_{n}<0 \}) =0 $ since $ F_{X_1}(y) =0 $
When Yn = y > 1, $ P(\{\mathbf{Y}_{n}>1 \}) =1 $ since $ F_{X_1}(y) =1 $
When $ 0 \leq Y_n = y \leq 1 $

$ F_{X_1}(y)= \int_{0}^{y}f_{X_1}(x)\,dx=\int_{0}^{y}\, 1 \, dx = y $

Thus, the CDF of $ \mathbf{Y}_{n} $ is the following
$ F_{Y_n}\left(y\right)=\begin{cases} \begin{array}{lll} 0, y <0 \\ 1-(1-y)^n, 0 \leq y \leq 1 \\ 1, y>1 \end{array}\end{cases} $
Thus, the pdf of $ \mathbf{Y}_{n} $ is
$ f_{Y_n}\left(y\right)=\begin{cases} \begin{array}{lll} n(1-y)^{n-1}, 0 \leq y \leq 1 \\ 0, \,\,\, \text{elsewhere} \end{array}\end{cases} $


(b)
Let μ = E[Yn] and σ2 = E( | Yn − μ | 2). By Chebyshev inequality, we have
$ P(|\mathbf{Y}_{n}-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2} = \frac{E[|\mathbf{Y}_{n}-\mu|^2]}{\varepsilon^2} $
Now, we examine
$ E[|\mathbf{Y}_{n}-\mu|^2] = E[Y_n^2-2 \mu Y_n+\mu^2] = E[Y_n^2]-2\mu E[Y_n]+\mu^2=E[Y_n^2]-\mu^2. $

In problem (a), we have the pdf of Yn, we can find E[Yn] and $ E[Y_n^2] $
$ E[Y_n] = \int_{0}^{1}y f_{Y_n}(y) \,dy = \int_{0}^{1} y n(1-y)^{n-1} \, dy = \frac{1}{n+1} $
$ E[Y_n^2] = \int_{0}^{1}y^2 f_{Y_n}(y) \,dy = \int_{0}^{1} y^2 n(1-y)^{n-1} \, dy = \frac{2}{n^2+3n+2} $
As $ n \to \infty $
$ \lim_{n \to \infty} E[|\mathbf{Y}_{n}-\mu|^2] = \lim_{n \to \infty} \left( E[Y_n^2]-(E[Y_n])^2 \right)= \lim_{n \to \infty}\left( \frac{2}{n^2+3n+2}- (\frac{1}{n+1})^2\right)=0 $
$ \Rightarrow P(|\mathbf{Y}_{n}-\mu| \geq \varepsilon) \leq \frac{E[|\mathbf{Y}_{n}-\mu|^2]}{\varepsilon^2} = 0 \,\,\text{as} \,n \to \infty $
Thus, the sequence Yn converges in probability to μ for any $ \varepsilon>0 $, and
$ \lim_{n \to \infty} \mu = \lim_{n \to \infty} E[Y_{n}] = \lim_{n \to \infty} \frac{1}{n+1} =0 $
$ \therefore P(|\mathbf{Y}_{n}-\mu| \geq \varepsilon) = P(|\mathbf{Y}_{n}-0| \geq \varepsilon) \to 0 \,\,\text{as} \,\, n \to \infty $

(c)
The CDF of Yn
$ F_{Y_n}\left(y\right)=\begin{cases} \begin{array}{lll} 0, y <0 \\ 1-(1-y)^n, 0 \leq y \leq 1 \\ 1, y>1 \end{array}\end{cases} $

As $ n \to \infty $
$ F_{Y_n}(y) \to F_{Y}(y)= \begin{cases} \begin{array}{lll} 0, \,\, y <0 \\ 1, \,\, y \geq 0 \end{array}\end{cases} $
where $ 1-(1-y)^n \to 1 $ as $ n \to \infty $, when 0 < y < 1
Because 0 < (1 − y) < 1, $ (1-y)^n \to 0 $, when $ n \to \infty $
$ F_{Y}(y)= \begin{cases} \begin{array}{lll} 0, \,\, y <0 \\ 1, \,\, y \geq 0 \end{array}\end{cases} $
where this CDF is a step function.

Thus, the sequence of random variable Yn with cumulative distribution function $ F_{Y_n}(y) $ converges in distribution to the random variable Y with cumulative distribution function FY(y), which is a step function.


Comments on Solution 2:

1. Curly braces are required to take probabilities on events.

2. Error in part (c): As n grows to infinity, 1 - (1-y)n is definitely not equal to 1, for y = 0. Technically, that would lead to an indeterminate value at y = 0, or can be thought of to be 0 (as engineering common practice).

Related Problems


1. Let Xn be a sequence of independent, identical distributed random variables, each has Cauchy pdf
$ f(x)=\frac{1}{\pi (1+x^2)} \text{, } -\infty < x < \infty $

Let Yn a new random variable defined by
$ Y_{n} = \frac{1}{n} \sum_{i=1}^{n} \, X_{i} $

(a) Find the pdf of the sequence Yn, and describe how it depends on n.

(b) Does the sequence $ \mathbf{Y}_{n} $ converge in distribution?

(c) If yes, what is the distribution of the random variable it converges to?


2. 


Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett