Line 1: Line 1:
[[Category:ECE]]
+
<br>
[[Category:QE]]
+
[[Category:CNSIP]]
+
[[Category:problem solving]]
+
[[Category:random variables]]
+
[[Category:probability]]
+
 
+
 
<center>
 
<center>
<font size= 4>
+
<font size="4">[[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] </font>  
[[ECE_PhD_Qualifying_Exams|ECE Ph.D. Qualifying Exam]]
+
</font size>
+
  
<font size= 4>
+
<font size="4">Communication, Networking, Signal and Image Processing (CS)</font>
Communication, Networking, Signal and Image Processing (CS)
+
  
Question 1: Probability and Random Processes
+
<font size="4">Question 1: Probability and Random Processes </font>  
</font size>
+
  
August 2012
+
August 2012  
</center>
+
</center>  
 
----
 
----
 +
 
----
 
----
Jump to [[ECE-QE_CS1-2012_solution-1|Problem 2]],[[ECE-QE CS1-2012 solution-2|3]]
+
 
 +
Jump to [[ECE-QE CS1-2012 solution-1|Problem 2]],[[ECE-QE CS1-2012 solution-2|3]]  
 +
 
 
----
 
----
=Problem 2 =
+
 
Problem statement: Let <math class="inline">X</math> be a continuous or discrete random variable with mean <math class="inline">\mu</math> and variance <math class="inline">\sigma^2</math>. Then, <math class="inline">\forall \varepsilon >0</math>, we have<br>
+
= Problem 2 =
<math> P(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2}</math><br>
+
 
===== <math>\color{blue}\text{Solution 1:}</math> =====
+
Problem statement: Let <span class="texhtml">''X''</span> be a continuous or discrete random variable with mean <span class="texhtml">μ</span> and variance <span class="texhtml">σ<sup>2</sup></span>. Then, <math>\forall \varepsilon >0</math>, we have<br> <math> P(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2}</math><br>  
 +
 
 +
===== <math>\color{blue}\text{Solution 1:}</math><br> =====
 +
 
 +
Statement: If '''X''' is random variable (continuous or discrete) with mean <math>\mu</math> and variance <math>\sigma^2</math>, then
 +
 
 +
P{|'''X'''-<math>\mu \geq \varepsilon</math>}
  
 
===== <math>\color{blue}\text{Solution 2:}</math>  =====
 
===== <math>\color{blue}\text{Solution 2:}</math>  =====
 +
 
*Discrete Case:<br>
 
*Discrete Case:<br>
Let <math class="inline">p_{X}(x)</math> be the pmf of X. The probability that <math class="inline">X</math> differs from <math class="inline">\mu</math> by at least <math class="inline">\varepsilon </math> is <br>
+
 
<math> P(|X-\mu| \geq \varepsilon)= \sum_{|X-\mu| \geq \varepsilon}p_{X}(x)</math><br>
+
Let <span class="texhtml">''p''<sub>''X''</sub>(''x'')</span> be the pmf of X. The probability that <span class="texhtml">''X''</span> differs from <span class="texhtml">μ</span> by at least <math>\varepsilon </math> is <br> <math> P(|X-\mu| \geq \varepsilon)= \sum_{|X-\mu| \geq \varepsilon}p_{X}(x)</math><br> Based on the definition of the variance, we have<br> <span class="texhtml">
Based on the definition of the variance, we have<br>
+
</span>
<math> \sigma^2 = \sum_{x}(x-\mu)^2 p_{X}(x)</math><br>
+
 
Let a set <math class="inline">A= \{ x|\,|x-\mu| \geq \varepsilon \}</math>. We have<br>
+
{|
<math> \sigma^2 = \sum_{x}(x-\mu)^2 p_{X}(x)= \sum_{x \in A}(x-\mu)^2 p_{X}(x)+\sum_{x \notin A}(x-\mu)^2 p_{X}(x)</math><br>
+
|- style="text-align: center;"
<math> \Rightarrow\sigma^2 \geq \sum_{x \in A}(x-\mu)^2 p_{X}(x)</math><br>
+
| σ<sup>2</sup> =  
Since, in set <math class="inline">A</math>, we have <math class="inline">|x-\mu| \geq \varepsilon</math>, we have<br>
+
| <span style="font-size: x-large; font-family: serif;">∑</span>
<math> \Rightarrow\sigma^2 \geq \sum_{x \in A}\varepsilon^2 p_{X}(x)= \varepsilon^2 \sum_{x \in A}p_{X}(x)=\varepsilon^2 P(x \in A) =\varepsilon^2 P(|X-\mu| \geq \varepsilon)</math><br>
+
| (''x'' − μ)<sup>2</sup>''p''<sub>''X''</sub>(''x'')
That is <br>
+
|- style="text-align: center; vertical-align: top;"
<math> P(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2}</math><br>
+
|
 +
| ''x''
 +
|
 +
|}
 +
 
 +
<br> Let a set <math>A= \{ x|\,|x-\mu| \geq \varepsilon \}</math>. We have<br> <math> \sigma^2 = \sum_{x}(x-\mu)^2 p_{X}(x)= \sum_{x \in A}(x-\mu)^2 p_{X}(x)+\sum_{x \notin A}(x-\mu)^2 p_{X}(x)</math><br> <math> \Rightarrow\sigma^2 \geq \sum_{x \in A}(x-\mu)^2 p_{X}(x)</math><br> Since, in set <span class="texhtml">''A''</span>, we have <math>|x-\mu| \geq \varepsilon</math>, we have<br> <math> \Rightarrow\sigma^2 \geq \sum_{x \in A}\varepsilon^2 p_{X}(x)= \varepsilon^2 \sum_{x \in A}p_{X}(x)=\varepsilon^2 P(x \in A) =\varepsilon^2 P(|X-\mu| \geq \varepsilon)</math><br> That is <br> <math> P(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2}</math><br>  
  
 
*Continuous Case:<br>
 
*Continuous Case:<br>
Let <math class="inline">f_{X}(x)</math> be the pdf of X. <br>
+
 
<math> \sigma^2=\int_{-\infty}^{\infty}(x-\mu)^2f_{X}(x) \,dx \geq \int_{-\infty}^{\mu-\varepsilon}(x-\mu)^2f_{X}(x) \,dx+ \int_{\mu+\varepsilon}^{\infty}(x-\mu)^2f_{X}(x) \,dx</math><br>
+
Let <span class="texhtml">''f''<sub>''X''</sub>(''x'')</span> be the pdf of X. <br> <math> \sigma^2=\int_{-\infty}^{\infty}(x-\mu)^2f_{X}(x) \,dx \geq \int_{-\infty}^{\mu-\varepsilon}(x-\mu)^2f_{X}(x) \,dx+ \int_{\mu+\varepsilon}^{\infty}(x-\mu)^2f_{X}(x) \,dx</math><br> The last inequality holds since we integrate a positive function. Since <math>x \leq \mu-\varepsilon</math> or <math>x \geq \mu+\varepsilon</math><br> <math> \Rightarrow |x-\mu| \geq \varepsilon \Rightarrow (x-\mu)^2 \geq \varepsilon^2 </math><br> Based on the above equation, we have <br> <math> \sigma^2 \geq \int_{-\infty}^{\mu-\varepsilon}\varepsilon^2 f_{X}(x) \,dx+ \int_{\mu+\varepsilon}^{\infty} \varepsilon^2 f_{X}(x) \,dx</math><br> <math> = \varepsilon^2 \left( \int_{-\infty}^{\mu-\varepsilon}f_{X}(x) \,dx+ \int_{\mu+\varepsilon}^{\infty} f_{X}(x) \,dx  \right) = \varepsilon^2 P \bigg( X \leq (\mu-\varepsilon)\, \text{or} \, X \geq (\mu+\varepsilon) \bigg) = \varepsilon^2 P(|X-\mu| \geq \varepsilon)</math><br> <math>  \Rightarrow P(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2}
The last inequality holds since we integrate a positive function. Since <math class="inline">x \leq \mu-\varepsilon</math> or <math class="inline">x \geq \mu+\varepsilon</math><br>  
+
</math>
<math> \Rightarrow |x-\mu| \geq \varepsilon \Rightarrow (x-\mu)^2 \geq \varepsilon^2 </math><br>
+
 
Based on the above equation, we have <br>
+
[[Category:ECE]] [[Category:QE]] [[Category:CNSIP]] [[Category:Problem_solving]] [[Category:Random_variables]] [[Category:Probability]]
<math> \sigma^2 \geq \int_{-\infty}^{\mu-\varepsilon}\varepsilon^2 f_{X}(x) \,dx+ \int_{\mu+\varepsilon}^{\infty} \varepsilon^2 f_{X}(x) \,dx</math><br>
+
<math> = \varepsilon^2 \left( \int_{-\infty}^{\mu-\varepsilon}f_{X}(x) \,dx+ \int_{\mu+\varepsilon}^{\infty} f_{X}(x) \,dx  \right) = \varepsilon^2 P \bigg( X \leq (\mu-\varepsilon)\, \text{or} \, X \geq (\mu+\varepsilon) \bigg) = \varepsilon^2 P(|X-\mu| \geq \varepsilon)</math><br>
+
<math>  \Rightarrow P(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2}
+

Revision as of 11:24, 26 January 2014


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2012



Jump to Problem 2,3


Problem 2

Problem statement: Let X be a continuous or discrete random variable with mean μ and variance σ2. Then, $ \forall \varepsilon >0 $, we have
$ P(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2} $

$ \color{blue}\text{Solution 1:} $

Statement: If X is random variable (continuous or discrete) with mean $ \mu $ and variance $ \sigma^2 $, then

P{|X-$ \mu \geq \varepsilon $}

$ \color{blue}\text{Solution 2:} $
  • Discrete Case:

Let pX(x) be the pmf of X. The probability that X differs from μ by at least $ \varepsilon $ is
$ P(|X-\mu| \geq \varepsilon)= \sum_{|X-\mu| \geq \varepsilon}p_{X}(x) $
Based on the definition of the variance, we have

σ2 = (x − μ)2pX(x)
x


Let a set $ A= \{ x|\,|x-\mu| \geq \varepsilon \} $. We have
$ \sigma^2 = \sum_{x}(x-\mu)^2 p_{X}(x)= \sum_{x \in A}(x-\mu)^2 p_{X}(x)+\sum_{x \notin A}(x-\mu)^2 p_{X}(x) $
$ \Rightarrow\sigma^2 \geq \sum_{x \in A}(x-\mu)^2 p_{X}(x) $
Since, in set A, we have $ |x-\mu| \geq \varepsilon $, we have
$ \Rightarrow\sigma^2 \geq \sum_{x \in A}\varepsilon^2 p_{X}(x)= \varepsilon^2 \sum_{x \in A}p_{X}(x)=\varepsilon^2 P(x \in A) =\varepsilon^2 P(|X-\mu| \geq \varepsilon) $
That is
$ P(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2} $

  • Continuous Case:

Let fX(x) be the pdf of X.
$ \sigma^2=\int_{-\infty}^{\infty}(x-\mu)^2f_{X}(x) \,dx \geq \int_{-\infty}^{\mu-\varepsilon}(x-\mu)^2f_{X}(x) \,dx+ \int_{\mu+\varepsilon}^{\infty}(x-\mu)^2f_{X}(x) \,dx $
The last inequality holds since we integrate a positive function. Since $ x \leq \mu-\varepsilon $ or $ x \geq \mu+\varepsilon $
$ \Rightarrow |x-\mu| \geq \varepsilon \Rightarrow (x-\mu)^2 \geq \varepsilon^2 $
Based on the above equation, we have
$ \sigma^2 \geq \int_{-\infty}^{\mu-\varepsilon}\varepsilon^2 f_{X}(x) \,dx+ \int_{\mu+\varepsilon}^{\infty} \varepsilon^2 f_{X}(x) \,dx $
$ = \varepsilon^2 \left( \int_{-\infty}^{\mu-\varepsilon}f_{X}(x) \,dx+ \int_{\mu+\varepsilon}^{\infty} f_{X}(x) \,dx \right) = \varepsilon^2 P \bigg( X \leq (\mu-\varepsilon)\, \text{or} \, X \geq (\mu+\varepsilon) \bigg) = \varepsilon^2 P(|X-\mu| \geq \varepsilon) $
$ \Rightarrow P(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2} $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett