Line 24: Line 24:
 
----
 
----
 
=Problem 2 =
 
=Problem 2 =
 
+
Problem statement: Let <math class="inline">X</math> be a continuous or discrete random variable with mean <math class="inline">\mu</math> and variance <math class="inline">\sigma^2</math>. Then, <math class="inline">\forall \varepsilon >0</math>, we have<br>
 +
<math> P(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2}</math><br>
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
  
 
===== <math>\color{blue}\text{Solution 2:}</math>  =====
 
===== <math>\color{blue}\text{Solution 2:}</math>  =====
 +
Discrete Case:<br>
 +
Continuous Case:<br>

Revision as of 18:57, 25 January 2014


ECE Ph.D. Qualifying Exam

Communication, Networking, Signal and Image Processing (CS)

Question 1: Probability and Random Processes

August 2012



Jump to Problem 2,3


Problem 2

Problem statement: Let $ X $ be a continuous or discrete random variable with mean $ \mu $ and variance $ \sigma^2 $. Then, $ \forall \varepsilon >0 $, we have
$ P(|X-\mu| \geq \varepsilon) \leq \frac{\sigma^2}{\varepsilon^2} $

$ \color{blue}\text{Solution 1:} $
$ \color{blue}\text{Solution 2:} $

Discrete Case:
Continuous Case:

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood