Line 22: | Line 22: | ||
---- | ---- | ||
==Question== | ==Question== | ||
− | ''' | + | '''Problem 2. ''' 25 pts |
Line 31: | Line 31: | ||
:'''Click [[ECE-QE_CS1-2012_solusion-1|here]] to view student [[ECE-QE_CS1-2012_solusion-1|answers and discussions]]''' | :'''Click [[ECE-QE_CS1-2012_solusion-1|here]] to view student [[ECE-QE_CS1-2012_solusion-1|answers and discussions]]''' | ||
---- | ---- | ||
− | ''' | + | '''Problem 3.''' 25 pts |
Revision as of 15:43, 25 January 2014
Communication, Networking, Signal and Image Processing (CS)
Question 1: Probability and Random Processes
August 2012
Question
Problem 2. 25 pts
State and prove the Chebyshev inequality for random variable $ \mathbf{X} $ with mean $ \mu $ and variance $ \sigma^2 $. In constructing your proof, keep in mind that $ \mathbf{X} $ may be either a discrete or continuous random variable.
- Click here to view student answers and discussions
Problem 3. 25 pts
Let $ \mathbf{X}_{1} \dots \mathbf{X}_{n} \dots $ be a sequence of independent, identical distributed random variables, each uniformly distributed on the interval [0, 1], an hence having pdf
$ f_{X}\left(x\right)=\begin{cases} \begin{array}{lll} 1, \text{ for } 0 \leq x \leq1\\ 0, \text{ elsewhere. } \end{array}\end{cases} $
Let $ \mathbf{Y}_{n} $ be a new random variable defined by
$ \mathbf{Y}_{n} = min \,\{{ \mathbf{X}_1, \mathbf{X}_2, \dots \mathbf{X}_n} \} $
(a) Find the pdf of $ \mathbf{Y}_{n} $
(b) Does the sequence $ \mathbf{Y}_{n} $ converge in probability?
(c) Does the sequence $ \mathbf{Y}_{n} $ converge in distribution? If yes, specify the cumulative function of the random variable it converges to.
- Click here to view student answers and discussions