Line 2: Line 2:
  
  
We will start with the definition of a matrix. An <math>m\times n</math> ''matrix'' <math>A</math> over the reals, is an arrangement of real numbers in a table with <math>m</math> rows and <math>n</math> columns.  
+
We will start with the definition of a matrix. An <math>mx n</math> ''matrix'' <math>A</math> over the reals, is an arrangement of real numbers in a table with <math>m</math> rows and <math>n</math> columns.  
 +
 
 +
Let us consider for example the <math>2x3</math>
  
Let us consider for example the <math>2\times 3</math>\\
 
 
  <math>A=\begin{bmatrix}2&4e^{2}&0\\5&-1&\sqrt{\pi}\\\end{bmatrix} </math>.
 
  <math>A=\begin{bmatrix}2&4e^{2}&0\\5&-1&\sqrt{\pi}\\\end{bmatrix} </math>.
  
 
[[Category:MA 511Spring2013De la Mora]]
 
[[Category:MA 511Spring2013De la Mora]]

Revision as of 12:12, 12 December 2013

Rhea Section for MA 511 Professor De la Mora, Spring 2013

We will start with the definition of a matrix. An $ mx n $ matrix $ A $ over the reals, is an arrangement of real numbers in a table with $ m $ rows and $ n $ columns.

Let us consider for example the $ 2x3 $

$ A=\begin{bmatrix}2&4e^{2}&0\\5&-1&\sqrt{\pi}\\\end{bmatrix}  $.

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang