Line 1: Line 1:
\documentclass{article}
 
\usepackage{relsize}
 
\begin{document}
 
\[
 
    x+y=z \leftrightarrow \mathlarger{\mathlarger{\mathlarger{(x+y=z)}}}
 
\]
 
\end{document}
 
 
 
 
Mark Rosinski, markrosi@purdue.edu Joseph Lam, lam5@purdue.edu Beichen Xiao, xiaob@purdue.edu  
 
Mark Rosinski, markrosi@purdue.edu Joseph Lam, lam5@purdue.edu Beichen Xiao, xiaob@purdue.edu  
  
Line 64: Line 55:
 
==Regular p-groups==
 
==Regular p-groups==
 
'''Definitons:'''
 
'''Definitons:'''
* For every \mathlarger{a, b} <math>\in</math><math>\mathlarger{G}</math>, there exists <math>\mathlarger{c}</math><math>/in</math><math>\mathlarger{{[<a,b>,<a,b>]}</math>
+
* For every <math>a, b</math> <math>\in</math><math>G</math>, there exists <math>\mathlarger{c}</math><math>/in</math><math>\mathlarger{{[<a,b>,<a,b>]}</math>
  
  

Revision as of 09:49, 30 November 2013

Mark Rosinski, markrosi@purdue.edu Joseph Lam, lam5@purdue.edu Beichen Xiao, xiaob@purdue.edu

Outline:

Origin -Creator -History of the Sylow Theorems/ p-groups P-Groups -Definition -Regular p-groups

               -Relationship to Abelian Groups

-Application -Frattini Subgroup

       -Special p groups
  -Pro p-groups
  -Powerful p-groups

Sylow Theorems -Application

                -Theorem 1

-Theorem 2 -Theorem 3

       -Importance of Lagrange Theory

I plan on deleting everything above this after we have completed the paper.  I planned on just using the outline as a guide. 

I've been using these websites: 

http://math.berkeley.edu/~sikimeti/SylowNotes.pdf

http://omega.albany.edu:8008/Symbols.html (this is Tex symbols)

http://www.ams.org/journals/bull/2001-38-03/S0273-0979-01-00909-0/S0273-0979-01-00909-0.pdf

and also the pdf emailed to you

http://groupprops.subwiki.org/wiki/Regular_p-group regular p-group

http://people.maths.ox.ac.uk/craven/docs/lectures/pgroups.pdf this one is almost about everything.





P-groups

Definitions:

  • Let p be a prime p $ \in $ $ \mathbb{Z} $ such that $ \mathbb{Z} $≥0. A p-group is a group of order pn.
  • A subgroup of order pk for some k ≥ 1 is called a p-subgroup.
  • If |G| = pαm where p does not divide m, then a subgroup of order pα is called a Sylow p-subgroup of G.


$ \usepackage{relsize} $

Regular p-groups

Definitons:

  • For every $ a, b $ $ \in $$ G $, there exists $ \mathlarger{c} $$ /in $$ \mathlarger{{[<a,b>,<a,b>]} $



Sylow's Theorems

Definitions:

Let G be a group of order pαm, where p is a prime, m≥1, and p does not divide m.  Then:

  1. Sylp(G) $ \neq $Failed to parse (lexing error): \0

All Sylow p-subgroups are conjugate in G. To expand, if P1 and P2 are both Sylow p-subgroups, then there is some g


Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison