Line 2: Line 2:
 
[[Category:Lecture notes]]
 
[[Category:Lecture notes]]
  
[[ECE600_F13_notes_mhossain|Back to all ECE 600 notes]]
+
[[ECE600_F13_notes_mhossain|Back to all ECE 600 notes]]<br/>
 +
[[Previous Topic: Random Variables: Distributions]]<br/>
 +
[[ECE600_F13_rv_Functions_of_random_variable_mhossain|Next Topic: Functions of a Random Variable]]
  
  
Line 128: Line 130:
 
----
 
----
  
[[ECE600_F13_notes_mhossain|Back to all ECE 600 notes]]
+
[[ECE600_F13_notes_mhossain|Back to all ECE 600 notes]]<br/>
 +
[[Previous Topic: Random Variables: Distributions]]<br/>
 +
[[ECE600_F13_rv_Functions_of_random_variable_mhossain|Next Topic: Functions of a Random Variable]]

Revision as of 08:11, 30 January 2014

Back to all ECE 600 notes
Previous Topic: Random Variables: Distributions
Next Topic: Functions of a Random Variable


Random Variables and Signals

Topic 7: Random Variables: Conditional Distributions




We will now learn how to represent conditional probabilities using the cdf/pdf/pmf. This will provide us some of the most powerful tools for working with random variables: the conditional pdf and conditional pmf.

Recall that

$ P(A|B) = \frac{P(A\cap B)}{P(B)} $

∀ A,B ∈ F with P(B) > 0.

We will consider this conditional probability when A = {X≤x} for a continuous random variable or A = {X=x} for a discrete random variable.



Discrete X

If P(B)>0, then let

$ P_X(x|B)\equiv P(X=x|B)=\frac{p(\{X=x\}\cap B)}{P(B)} $

∀x ∈ R, for a given B ∈ F.
The function p$ _X $ is the conditional pmf of X. Recall Bayes' theorem and the Total Probability Law:

$ P(A|B)=\frac{P(B|A)P(A)}{P(B)};\quad P(B), P(A)>0 $

and

$ P(B)=\sum_{i = 1}^nP(B|A_i)P(A_i) $

if $ A_1,...,A_n $ form a partition of S and $ P(A_i)>0 $ ∀i.

In the case A = {X=x}, we get

$ p_X(x|B) = \frac{P(B|X=x)p_X(x)}{P(B)} $

where p$ _X $(x|B) is the conditional pmf of X given B and $ p_X(x) $ is the pmf of X. Note that Bayes' Theorem in this context requires not only that P(B) >0 but also that P(X = x) > 0.

We also can use the TPL to get

$ p_X(x) = \sum_{i=1}^n p_X(x|A_i)P(A_i) $



Continuous X

Let A = {X≤x}. Then if P(B)>0, B ∈ F, define

$ F_X(x|B)\equiv P(X\leq x|B) = \frac{P(\{X\leq x\}\cap B)}{P(B)} $

as the conditional cdf of X given B.
The conditional pdf of X given B is then

$ f_X(x|B) = \frac{d}{dx}F_X(x|B) $

Note that B may be an event involving X.

Example: let B = {X ≤ a} for some a ∈ R. Then

$ F_X(x|B) = \frac{P(\{X\leq x\}\cap\{X\leq a\})}{P(X\leq a)} $

Two cases:

  • Case (i): $ x > a $
$ F_X(x|B) = \frac{P(X\leq a)}{P(X\leq a)} = 1 $
  • Case (ii): $ x < a $
$ F_X(x|B) = \frac{P(X\leq x)}{P(X\leq a)} = \frac{F_X(x)}{F_X(a)} $


Fig 1: {X ≤ x} ∩ {X ≤ a} for the two different cases.


Now,

$ f_X(x|B) = f_X(x|X\leq a)=\begin{cases} 0 & x>a \\ \frac{f_X(x)}{F_X(a)} & x\leq a \end{cases} $
Fig 2: f$ _X $(x) and f$ _X $(x$ | $X ≤ a).


Bayes' Theorem for continuous X:
We can easily see that

$ F_X(x|B)= \frac{P(B|X\leq x)F_X(x)}{P(B)} $

from previous version of Bayes' Theorem, and that

$ F_X(x)=\sum_{i=1}^n F_X(x|A_i)P(A_i) $

if $ A_1,...,A_n $ form a partition of S and P($ A_i $) > 0 ∀$ i $, from TPL.
but what we often want to know is a probability of the type P(A|X=x) for some AF. We could define this as

$ P(A|X=x)\equiv\frac{P(A\cap \{X=x\})}{P(X=x)} $

but the right hand side (rhs) would be 0/0 since X is continuous.
Instead, we will use the following definition in this case:

$ P(A|X=a)\equiv\lim_{\Delta x\rightarrow 0}P(A|x<X\leq x+\Delta x) $
$ \Delta x > 0 \ $

using our standard definition of conditional probability for the rhs. This leads to the following derivation:

$ \begin{align} P(A|X=x) &= \lim_{\Delta x\rightarrow 0}\frac{P(x<X\leq x+\Delta x|A)P(A)}{P(x<X\leq x+\Delta x)} \\ \\ &= P(A)\lim_{\Delta x\rightarrow 0}\frac{F_X(x+\Delta x|A)-F_X(x|A)}{F_X(x+\Delta x)-F_X(x)} \\ \\ &= P(A)\frac{\lim_{\Delta x\rightarrow 0}\frac{F_X(x+\Delta x|A)-F_X(x|A)}{\Delta x}}{\lim_{\Delta x\rightarrow 0}\frac{F_X(x+\Delta x)-F_X(x)}{\Delta x}}\\ \\ &=P(A)\frac{f_X(x|A)}{f_X(x)} \end{align} $

So,

$ P(A|X=x)=\frac{f_X(x|A)P(A)}{f_X(x)} $

This is how Bayes' Theorem is normally stated for a continuous random variable X and an event AF with P(A) > 0.

We will revisit Bayes' Theorem one more time when we discuss two random variables.



References



Questions and comments

If you have any questions, comments, etc. please post them on this page



Back to all ECE 600 notes
Previous Topic: Random Variables: Distributions
Next Topic: Functions of a Random Variable

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal