Line 16: | Line 16: | ||
Recall that <br/> | Recall that <br/> | ||
− | <center><math> P(A|B) = \frac{ | + | <center><math> P(A|B) = \frac{P(A\cap B)}{P(B)}</math></center> |
∀ A,B ∈ ''F'' with P(B) > 0. | ∀ A,B ∈ ''F'' with P(B) > 0. | ||
Revision as of 14:53, 10 October 2013
Random Variables and Signals
Topic 7: Random Variables: Conditional Distributions
We will now learn how to represent conditional probabilities using the cdf/pdf/pmf. This will provide us some of the most powerful tools for working with random variables: the conditional pdf and conditional pmf.
Recall that
∀ A,B ∈ F with P(B) > 0.
We will consider this conditional probability when A = {X≤x} for a continuous random variable or A = {X=x} for a discrete random variable.
Discrete X
If P(B)>0, then let
∀x ∈ R, for a given B ∈ F.
The function $ p_x $ is the conditional pmf of x. Recall Bayes' theorem and the Total Probability Law:
and
if $ A_1,...,A_n $ form a partition of S and $ P(A_i)>0 $ ∀i.
In the case A = {X=x}, we get
where $ p_X(x|B) $ is the conditional pmf of X given B and $ p_X(x) $ is the pmf of X.
We also can use the TPL to get
Continuous X
Let A = {X≤x}. Then if P(B)>0, B ∈ F, definr
as the conditional cdf of X given B.
The conditional pdf of X given B is then
Note that B may be an event involving X.
Example: let B = {X≤x} for some a ∈ R. Then
Two cases:
- Case (i): $ x>a $
- Case (ii): $ x>a $
Now,
Bayes' Theorem for continuous X:
We can easily see that
from previous version of Bayes' Theorem, and that
if $ A_1,...,A_n $ form a partition of S and P($ A_i $) > 0 ∀$ i $, from TPL.
but what we often want to know is a probability of the type P(A|X=x) for some A∈F. We could define this as
but the right hand side (rhs) would be 0/0 since X is continuous.
Instead, we will use the following definition in this case:
using our standard definition of conditional probability for the rhs. This leads to the following derivation:
So,
This is how Bayes' Theorem is normally stated for a continuous random variable X and an event A∈F with P(A) > 0.
We will revisit Bayes' Theorem one more time when we discuss two random variables.
References
- M. Comer. ECE 600. Class Lecture. Random Variables and Signals. Faculty of Electrical Engineering, Purdue University. Fall 2013.