(New page: Category:ECE600 Category:Set Theory Category:Math == Theorem == Intersection is commutative <br/> <math>A\cap B = B\cap A</math> <br/> where <math>A</math> and <math>B</mat...)
 
 
Line 8: Line 8:
 
Intersection  is commutative <br/>
 
Intersection  is commutative <br/>
 
<math>A\cap B = B\cap A</math> <br/>
 
<math>A\cap B = B\cap A</math> <br/>
where <math>A</math> and <math>B</math> are events in a probability space.
+
where <math>A</math> and <math>B</math> are sets.
  
  

Latest revision as of 10:21, 1 October 2013


Theorem

Intersection is commutative
$ A\cap B = B\cap A $
where $ A $ and $ B $ are sets.



Proof

$ \begin{align} A\cap B &\triangleq \{x\in\mathcal S:\;x\in A\;\mbox{and}\; x\in B\}\\ &= \{x\in\mathcal S:\;x\in B\;\mbox{and}\; x\in A\}\\ &= B\cap A\\ \blacksquare \end{align} $


Back to list of all proofs

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett