(New page: == Theorem == Union is commutative <br/> <math>A\cup B = b\cup A</math> <br/> where <math>A</math> and <math>B</math> are events in a probability space. ---- ==Proof== <math>\begin{a...)
 
Line 1: Line 1:
 +
[[Category:ECE600]]
 +
[[Category:Set Theory]]
 +
[[Category:Math]]
 +
 +
 
== Theorem ==
 
== Theorem ==
  
Line 16: Line 21:
 
\blacksquare
 
\blacksquare
 
\end{align}</math>
 
\end{align}</math>
 +
 +
----
 +
[[Proofs_mhossain|Back to list of all proofs]]

Revision as of 19:53, 28 September 2013


Theorem

Union is commutative
$ A\cup B = b\cup A $
where $ A $ and $ B $ are events in a probability space.



Proof

$ \begin{align} A\cup B &\triangleq \{x\in\mathcal S:\;x\in A\;\mbox{or}\; x\in B\}\\ &= \{x\in\mathcal S:\;x\in B\;\mbox{or}\; x\in A\}\\ &= B\cup A\\ \blacksquare \end{align} $


Back to list of all proofs

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood