(Undo revision 58138 by Choi155 (Talk))
Line 18: Line 18:
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
 
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
  
'''No need to write your name: we can find out who wrote what by checking the history of the page.'''
 
 
----
 
----
 
===Answer 1===
 
===Answer 1===
 
 
 
<math>x[n]=\sin \left( \frac{2 \pi}{100} \right)</math>
 
<math>x[n]=\sin \left( \frac{2 \pi}{100} \right)</math>
  
Line 35: Line 32:
 
<math>X_(\omega) =  \frac{\pi}{j} \left( \delta \left({\omega - \frac{2 \pi}{100}}\right) - \delta \left({\omega + \frac{2 \pi}{100}}\right) \right)  by  DTFT  table</math>
 
<math>X_(\omega) =  \frac{\pi}{j} \left( \delta \left({\omega - \frac{2 \pi}{100}}\right) - \delta \left({\omega + \frac{2 \pi}{100}}\right) \right)  by  DTFT  table</math>
  
 +
:<span style="color:green"> Instructor's comment: You need to learn to find the answer without using a table.  Now, I am not sure which table you used, but it must be wrong, since the anwer you obtained is not periodic with period <math>2\pi</math>.</span>
 
===Answer 2===
 
===Answer 2===
  
Line 40: Line 38:
 
<math>x[n] = \frac{1}{2j}  \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right)</math>
 
<math>x[n] = \frac{1}{2j}  \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right)</math>
  
Then, for w = [-pi, pi]
+
 
 +
Then, for w = [-pi, pi] (<span style="color:green"> Instructor's comment: You need more justification here.)</span>
 +
 
 
<math>X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right)</math>
 
<math>X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right)</math>
  
Line 49: Line 49:
 
<math>X_(\omega) = rep_2pi \frac{50}{j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right)</math>
 
<math>X_(\omega) = rep_2pi \frac{50}{j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right)</math>
  
 
+
(<span style="color:green"> Instructor's comment: You should make it clear which expressions are valid for all values of <math>\omega</math>, and which expressions are only valid for <math>\omega \in [-\pi, \pi ]</math>.</span>
 
===Answer 3===
 
===Answer 3===
We can separate the equation to the following function
+
We can separate <span style="color:green"> (Instructor's comment: separate? Do you mean "write"?)</span>the equation (<span style="color:green"> Instructor's comment: it's not an equation: it's a signal, or a function.)</span> to the following function
  
 
<math>x[n]=\frac{1}{2 j} \left( e^\frac{j 2 \pi n}{100}  - e^\frac{- j 2 \pi n}{100}  \right)  </math>
 
<math>x[n]=\frac{1}{2 j} \left( e^\frac{j 2 \pi n}{100}  - e^\frac{- j 2 \pi n}{100}  \right)  </math>
Line 62: Line 62:
  
 
<math>X_(\omega) = \frac{1}{2 j} \left( \sum_{n = -\infty}^{\infty} e^{ \frac{j2 \pi n} {100} } e^{-j\omega n} - \sum_{n = -\infty}^{ \infty} e^{\frac{-j2 \pi n} {100} } e^{-j\omega n} \right)</math>
 
<math>X_(\omega) = \frac{1}{2 j} \left( \sum_{n = -\infty}^{\infty} e^{ \frac{j2 \pi n} {100} } e^{-j\omega n} - \sum_{n = -\infty}^{ \infty} e^{\frac{-j2 \pi n} {100} } e^{-j\omega n} \right)</math>
 +
 +
<span style="color:green"> (Instructor's comment: Why write the equation above if you are going to use a FT pair from a table?)</span>
  
 
From Discrete Fourier Transform pair,
 
From Discrete Fourier Transform pair,
Line 67: Line 69:
 
<math> x[n] = e^{-j\omega_0 n} </math> DTFT to <math> X_(\omega) = 2 \pi \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right)  </math>
 
<math> x[n] = e^{-j\omega_0 n} </math> DTFT to <math> X_(\omega) = 2 \pi \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right)  </math>
  
Hence, the function will be
+
<span style="color:green"> (Instructor's comment: Careful above! The original signal was called x[n]; you can't reuse x[n] for a different signal.)</span>
 +
 
 +
Hence, the function <span style="color:green"> (Instructor's comment: Function? You mean "DTFT"?.)</span> will be
  
 
<math> X_(\omega) =  \frac{\pi}j \left( \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right) - \sum_{n = -\infty}^{ \infty} \delta \left( \omega+\omega_0 - 2\pi l \right) \right)  </math>
 
<math> X_(\omega) =  \frac{\pi}j \left( \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right) - \sum_{n = -\infty}^{ \infty} \delta \left( \omega+\omega_0 - 2\pi l \right) \right)  </math>
 +
 +
<span style="color:green"> (Instructor's comment: What is <math>\omega_0</math>?)</span>
  
 
<math>x[n]=\sin \left( \frac{2\pi}{100} n \right)</math>
 
<math>x[n]=\sin \left( \frac{2\pi}{100} n \right)</math>
  
 
+
<span style="color:green"> (Instructor's comment: You don't need to re-write the signal.)</span>
 +
----
 
[[2013_Fall_ECE_438_Boutin|Back to ECE438 Fall 2013]]
 
[[2013_Fall_ECE_438_Boutin|Back to ECE438 Fall 2013]]

Revision as of 04:49, 16 September 2013


Practice Problem on Discrete-time Fourier transform computation

Compute the discrete-time Fourier transform of the following signal:

$ x[n]= \sin \left( \frac{2 \pi }{100} n \right) $

(Write enough intermediate steps to fully justify your answer.)


Share your answers below

You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!


Answer 1

$ x[n]=\sin \left( \frac{2 \pi}{100} \right) $


$ x[n] = \frac{1}{2j} \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right) $

$ X_(\omega) = \sum_{n=-\infty}^{+\infty} x[n] e^{-j\omega n} $

$ X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right) $


$ X_(\omega) = \frac{\pi}{j} \left( \delta \left({\omega - \frac{2 \pi}{100}}\right) - \delta \left({\omega + \frac{2 \pi}{100}}\right) \right) by DTFT table $

Instructor's comment: You need to learn to find the answer without using a table. Now, I am not sure which table you used, but it must be wrong, since the anwer you obtained is not periodic with period $ 2\pi $.

Answer 2

First, write the original function as: $ x[n] = \frac{1}{2j} \left( e^{ \frac{j2 \pi}{100n}}-e^{- \frac{j2 \pi}{100n}} \right) $


Then, for w = [-pi, pi] ( Instructor's comment: You need more justification here.)

$ X_(\omega) = \frac{1}{2j} \left( \sum_{n=-\infty}^{+\infty} e^{ \frac{j2 \pi} {100} n} e^{-j\omega n} - \sum_{n=-\infty}^{+\infty} e^{\frac{-j2 \pi} {100} n} e^{-j\omega n} \right) $

$ X_(\omega) = \frac{100}{2j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right) $

which is really is:

$ X_(\omega) = rep_2pi \frac{50}{j} \left( \delta \left( \frac{100}{2pi}\omega - 1 \right) + \left( \frac{100}{2pi}\omega + 1 \right) \right) $

( Instructor's comment: You should make it clear which expressions are valid for all values of $ \omega $, and which expressions are only valid for $ \omega \in [-\pi, \pi ] $.

Answer 3

We can separate (Instructor's comment: separate? Do you mean "write"?)the equation ( Instructor's comment: it's not an equation: it's a signal, or a function.) to the following function

$ x[n]=\frac{1}{2 j} \left( e^\frac{j 2 \pi n}{100} - e^\frac{- j 2 \pi n}{100} \right) $

Because based on Fourier transform equation,

$ X_(\omega) = \sum_{n = -\infty}^{\infty} x[n] e^{-j \omega n} $

Substitute in x[n]

$ X_(\omega) = \frac{1}{2 j} \left( \sum_{n = -\infty}^{\infty} e^{ \frac{j2 \pi n} {100} } e^{-j\omega n} - \sum_{n = -\infty}^{ \infty} e^{\frac{-j2 \pi n} {100} } e^{-j\omega n} \right) $

(Instructor's comment: Why write the equation above if you are going to use a FT pair from a table?)

From Discrete Fourier Transform pair,

$ x[n] = e^{-j\omega_0 n} $ DTFT to $ X_(\omega) = 2 \pi \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right) $

(Instructor's comment: Careful above! The original signal was called x[n]; you can't reuse x[n] for a different signal.)

Hence, the function (Instructor's comment: Function? You mean "DTFT"?.) will be

$ X_(\omega) = \frac{\pi}j \left( \sum_{n = -\infty}^{ \infty} \delta \left( \omega-\omega_0 - 2\pi l \right) - \sum_{n = -\infty}^{ \infty} \delta \left( \omega+\omega_0 - 2\pi l \right) \right) $

(Instructor's comment: What is $ \omega_0 $?)

$ x[n]=\sin \left( \frac{2\pi}{100} n \right) $

(Instructor's comment: You don't need to re-write the signal.)


Back to ECE438 Fall 2013

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva