(New page: Category:ECE301 Category:ECE438 Category:ECE438Fall2013Boutin Category:problem solving Category:z-transform = Practice Problem on Z-trans...) |
|||
Line 16: | Line 16: | ||
---- | ---- | ||
===Answer 1=== | ===Answer 1=== | ||
− | + | alec green | |
+ | |||
+ | [[Image:Green26_ece438_hmwrk3_power_series.png| 480x320px]] | ||
+ | |||
+ | <math>X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n}</math> | ||
+ | |||
+ | <math>= \sum_{n=-3}^{+\infty} 3^{n}z^{-n}</math> | ||
+ | |||
+ | <math>= \sum_{n=-3}^{+\infty} (\frac{3}{z})^{n}</math> | ||
+ | |||
+ | Let k = n+3: | ||
+ | |||
+ | <math>= \sum_{k=0}^{+\infty} (\frac{3}{z})^{k-3}</math> | ||
+ | |||
+ | Using the geometric series property: | ||
+ | |||
+ | <math> | ||
+ | X(z) = \left\{ | ||
+ | \begin{array}{l l} | ||
+ | (\frac{z}{3})^3 \frac{1}{1-\frac{3}{z}} & \quad |z| > 3\\ | ||
+ | \text{diverges} & \quad \text{else} | ||
+ | \end{array} \right. | ||
+ | </math> | ||
+ | |||
=== Answer 2=== | === Answer 2=== | ||
Write it here. | Write it here. |
Revision as of 13:45, 12 September 2013
Contents
Practice Problem on Z-transform computation
Compute the compute the z-transform (including the ROC) of the following DT signal:
$ x[n]=3^n u[n+3] \ $
(Write enough intermediate steps to fully justify your answer.)
You will receive feedback from your instructor and TA directly on this page. Other students are welcome to comment/discuss/point out mistakes/ask questions too!
Answer 1
alec green
$ X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n} $
$ = \sum_{n=-3}^{+\infty} 3^{n}z^{-n} $
$ = \sum_{n=-3}^{+\infty} (\frac{3}{z})^{n} $
Let k = n+3:
$ = \sum_{k=0}^{+\infty} (\frac{3}{z})^{k-3} $
Using the geometric series property:
$ X(z) = \left\{ \begin{array}{l l} (\frac{z}{3})^3 \frac{1}{1-\frac{3}{z}} & \quad |z| > 3\\ \text{diverges} & \quad \text{else} \end{array} \right. $
Answer 2
Write it here.
Answer 3
Write it here.
Answer 4
Write it here.