Line 1: Line 1:
 
[[Category:NinjaSharksSet5]]
 
[[Category:NinjaSharksSet5]]
  
=NinjaSharkSet5Problem1=
+
=Problem 1=
  
  
Line 8: Line 8:
 
So <math> F(c^\frac{1}{p})</math> is the splitting field of <math> x^p-c </math>.
 
So <math> F(c^\frac{1}{p})</math> is the splitting field of <math> x^p-c </math>.
  
Now suppose that the polynomial is reducible in some field K.
+
Now suppose that the polynomial is reducible in some field <math>K \supset F </math> in which <math>(x-c^\frac{1}{p})^m </math> is one of the irreducible factors of <math>x^p-c </math> for some m < p.
 +
 
 +
Then <math>c^\frac{m}{p} \in K</math> but because p is prime, there is an n so that <math> nm \equiv 1</math> (mod p) and so <math> c^\frac{nm}{p} = c^r c^\frac{1}{p}</math>. Thus <math>c^\frac{1}{p} \in K</math> so <math>K \supset F(c^\frac{1}{p})</math>.
 +
 
 +
Thus, if <math> x^p-c </math> is not irreducible over F, <math>F \supset F(c^\frac{1}{p})</math> and F contains a root of <math> x^p-c </math>.
  
  

Latest revision as of 07:06, 3 July 2013


Problem 1

First notice $ (x-c^\frac{1}{p})^p = x^p-c $.

So $ F(c^\frac{1}{p}) $ is the splitting field of $ x^p-c $.

Now suppose that the polynomial is reducible in some field $ K \supset F $ in which $ (x-c^\frac{1}{p})^m $ is one of the irreducible factors of $ x^p-c $ for some m < p.

Then $ c^\frac{m}{p} \in K $ but because p is prime, there is an n so that $ nm \equiv 1 $ (mod p) and so $ c^\frac{nm}{p} = c^r c^\frac{1}{p} $. Thus $ c^\frac{1}{p} \in K $ so $ K \supset F(c^\frac{1}{p}) $.

Thus, if $ x^p-c $ is not irreducible over F, $ F \supset F(c^\frac{1}{p}) $ and F contains a root of $ x^p-c $.



Back to NinjaSharksSet5

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett