(z transform problem) |
|||
Line 1: | Line 1: | ||
Find the inverse Z transform of H(z)= Y(z)/X(z)= 1 / (1-a*z^(-1)) | Find the inverse Z transform of H(z)= Y(z)/X(z)= 1 / (1-a*z^(-1)) | ||
+ | <br> | ||
Solution: | Solution: | ||
+ | <br> | ||
Y(z)=a*z^(-1)Y(z) + X(z) | Y(z)=a*z^(-1)Y(z) + X(z) | ||
+ | <br> | ||
y(m) = a * y(m-k) + x(m) | y(m) = a * y(m-k) + x(m) | ||
+ | <br> | ||
y(m)= a^m at m>=0 | y(m)= a^m at m>=0 | ||
+ | <br> | ||
0 when m<0 | 0 when m<0 | ||
+ | <br> | ||
[[Back to Final Exam Sp 2005 solutions, ECE301 Spring 2013]] | [[Back to Final Exam Sp 2005 solutions, ECE301 Spring 2013]] |
Latest revision as of 04:05, 3 May 2013
Find the inverse Z transform of H(z)= Y(z)/X(z)= 1 / (1-a*z^(-1))
Solution:
Y(z)=a*z^(-1)Y(z) + X(z)
y(m) = a * y(m-k) + x(m)
y(m)= a^m at m>=0
0 when m<0