(New page: = Discriminant Functions For The Normal Density = ---- Lets begin with the continuous univariate normal or Gaussian density. <div style="margin-left...) |
|||
Line 7: | Line 7: | ||
<div style="margin-left: 25em;"> | <div style="margin-left: 25em;"> | ||
<math>f_x = \frac{1}{\sqrt{2 \pi} \sigma} \exp \left [- \frac{1}{2} \left ( \frac{x - \mu}{\sigma} \right)^2 \right ] </math> | <math>f_x = \frac{1}{\sqrt{2 \pi} \sigma} \exp \left [- \frac{1}{2} \left ( \frac{x - \mu}{\sigma} \right)^2 \right ] </math> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | for which ''the expected value'' of ''x'' is | ||
+ | |||
+ | <div style="margin-left: 25em;"> | ||
+ | <math> /mu = \varepsilon \left [x \right] = \int\limits_{-/infty}^{/infty} xp(x)\, dx</math> | ||
</div> | </div> |
Revision as of 15:58, 4 April 2013
Discriminant Functions For The Normal Density
Lets begin with the continuous univariate normal or Gaussian density.
$ f_x = \frac{1}{\sqrt{2 \pi} \sigma} \exp \left [- \frac{1}{2} \left ( \frac{x - \mu}{\sigma} \right)^2 \right ] $
for which the expected value of x is
$ /mu = \varepsilon \left [x \right] = \int\limits_{-/infty}^{/infty} xp(x)\, dx $