Line 1: Line 1:
 
 
[[Category:ECE301Spring2013JVK]] [[Category:ECE]] [[Category:ECE301]] [[Category:Probability]] [[Category:Problem_solving]] [[Category:LTI_systems]] [[Category:Convolution]] [[Category:Period]]
 
[[Category:ECE301Spring2013JVK]] [[Category:ECE]] [[Category:ECE301]] [[Category:Probability]] [[Category:Problem_solving]] [[Category:LTI_systems]] [[Category:Convolution]] [[Category:Period]]
  
Line 19: Line 18:
  
 
uninvertible: y(t) = (sum) k=0 -> 5 kx[n]
 
uninvertible: y(t) = (sum) k=0 -> 5 kx[n]
 +
 +
stable: y[n] = x[n] ^ x[n]
 +
 +
y[n] = n^2x[n-1]
 +
 +
time variying: y[n] = (n^.5)x[x+1] - 3
 +
 +
time invariant: y[n] = 18x[n+1] - 1047(x[n])^2
  
  
 
[[Bonus_point_1_ECE301_Spring2013|Back to first bonus point opportunity, ECE301 Spring 2013]]
 
[[Bonus_point_1_ECE301_Spring2013|Back to first bonus point opportunity, ECE301 Spring 2013]]

Latest revision as of 12:04, 11 February 2013



Question 1:

linear system: y = x1(2t) + x1(t)

nonlinear: y = (x(t)) • (x(t-1))

causal: y = et+5x(t-1)

noncausal: y = et-5x(t+1)

with memory: y = (x[n-5])^3

memoryless: y = (x[n]) ^ 3

invertible: y(t) = (x(t)) ^ t

uninvertible: y(t) = (sum) k=0 -> 5 kx[n]

stable: y[n] = x[n] ^ x[n]

y[n] = n^2x[n-1]

time variying: y[n] = (n^.5)x[x+1] - 3

time invariant: y[n] = 18x[n+1] - 1047(x[n])^2


Back to first bonus point opportunity, ECE301 Spring 2013

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva