Line 18: Line 18:
  
 
     The reduction factor is <span class="texhtml">(1 − ρ<sub>1</sub>)(1 − ρ<sub>2</sub>)(1 − ρ<sub>3</sub>)...(1 − ρ<sub>''N'' − 1</sub>)</span>
 
     The reduction factor is <span class="texhtml">(1 − ρ<sub>1</sub>)(1 − ρ<sub>2</sub>)(1 − ρ<sub>3</sub>)...(1 − ρ<sub>''N'' − 1</sub>)</span>
  Since  
+
  Since  
  <math> 1- \rho_{N-1} = \frac{F_{2}}{F_{3}} = \frac{2}{3}, </math>
+
  <math> 1- \rho_{N-1} = \frac{F_{2}}{F_{3}} = \frac{2}{3}, </math>
  we have  
+
  we have  
  <math> 1- \rho_{N-2} = \frac{F_{3}}{F_{4}}</math>    and so on.
+
  <math> 1- \rho_{N-2} = \frac{F_{3}}{F_{4}}</math>    and so on.
  
 
     Then, we have
 
     Then, we have
  <math> (1- \rho_{1})(1- \rho_{2})(1- \rho_{3})...(1- \rho_{N-1}) = \frac{F_{N}}{F_{N+1}}  \frac{F_{N-1}}{F_{N}}  ...  \frac{F_{2}}{F_{3}} = \frac{F_{2}}{F_{N+1}}</math>
+
  <math> (1- \rho_{1})(1- \rho_{2})(1- \rho_{3})...(1- \rho_{N-1}) = \frac{F_{N}}{F_{N+1}}  \frac{F_{N-1}}{F_{N}}  ...  \frac{F_{2}}{F_{3}} = \frac{F_{2}}{F_{N+1}}</math>
  Therefore, the reduction factor is
+
  Therefore, the reduction factor is
  <math>\frac{2}{F_{N+1}}</math>
+
  <math>\frac{2}{F_{N+1}}</math>
  
 
<br>  
 
<br>  
  
Solution 2:
+
Solution 2:  
 
+
The uncertainty interval is reduced by <math> (1- \rho_{1})(1- \rho_{2})(1- \rho_{3})...(1- \rho_{N-1}) = \frac{F_{N}}{F_{N+1}}  \frac{F_{N-1}}{F_{N}}  ...  \frac{F_{2}}{F_{3}} = \frac{F_{2}}{F_{N+1}}</math>
+
  
 +
The uncertainty interval is reduced by <math> (1- \rho_{1})(1- \rho_{2})(1- \rho_{3})...(1- \rho_{N-1}) = \frac{F_{N}}{F_{N+1}}  \frac{F_{N-1}}{F_{N}}  ...  \frac{F_{2}}{F_{3}} = \frac{F_{2}}{F_{N+1}}</math>
  
 +
<br>
  
 
+
<br> '''(ii)(10 pts)''' It is known that the minimizer of a certain function f(x) is located in the interval[-5, 15]. What is the minimal number of iterations of the Fibonacci method required to box in the minimizer within the range 1.0? Assume that the last useful value of the factor reducing the uncertainty range is 2/3, that is  
'''(ii)(10 pts)''' It is known that the minimizer of a certain function f(x) is located in the interval[-5, 15]. What is the minimal number of iterations of the Fibonacci method required to box in the minimizer within the range 1.0? Assume that the last useful value of the factor reducing the uncertainty range is 2/3, that is  
+
  
 
<math> 1- \rho_{N-1} = \frac{F_{2}}{F_{3}} = \frac{2}{3}, </math>  
 
<math> 1- \rho_{N-1} = \frac{F_{2}}{F_{3}} = \frac{2}{3}, </math>  
Line 53: Line 52:
 
<br>  
 
<br>  
  
Solution 2:
+
Solution 2:  
  
Since the final range is <math> 1.0 </math> and the initial range is <math> 20 </math>, we can say  
+
Since the final range is <span class="texhtml">1.0</span> and the initial range is <span class="texhtml">20</span>, we can say '''Failed to parse (syntax error): \frac{2}{F_{N+1}} \le \frac{1.0}{20} or equivalently F_{N+1}} \ge 40 '''
<math> \frac{2}{F_{N+1}} \le \frac{1.0}{20} or equivalently F_{N+1}} \ge 40 </math>
+
From the inequality, we get <math> F_{N+1} \ge 40 , so N+1=9 </math>. Therefore the minimum number of iteration is N-1=7
+
  
 +
From the inequality, we get <math> F_{N+1} \ge 40 , so N+1=9 </math>. Therefore the minimum number of iteration is N-1=7
  
 +
<br>
  
 
'''2. (20pts) Employ the DFP method to construct a set of Q-conjugate directions using the function'''  
 
'''2. (20pts) Employ the DFP method to construct a set of Q-conjugate directions using the function'''  
  
 
       <math>f = \frac{1}{2}x^TQx - x^Tb+c </math>
 
       <math>f = \frac{1}{2}x^TQx - x^Tb+c </math>
        <math>  =\frac{1}{2}x^T  
+
      <math>  =\frac{1}{2}x^T  
 
\begin{bmatrix}
 
\begin{bmatrix}
 
   1 & 1 \\
 
   1 & 1 \\
Line 80: Line 79:
  
 
       <math>f = \frac{1}{2}x^TQx - x^Tb+c </math>
 
       <math>f = \frac{1}{2}x^TQx - x^Tb+c </math>
      <span class="texhtml">''U''''s''''e''</span> <span class="texhtml">''i''''n''''i''''t''''i''''a''''l''</span>  <span class="texhtml">''p''''o''''i''''n''''t''</span> <span class="texhtml">''x''<sup>(0)</sup> = [0,0]<sup>''T''</sup>''a''''n''''d''</span> <span class="texhtml">''H''<sub>0</sub> = ''I''<sub>2</sub></span>
+
    <span class="texhtml">''U'''s'''e''</span> <span class="texhtml">''i'''n'''i'''t'''i'''a'''l''</span>  <span class="texhtml">''p'''o'''i'''n'''t''</span> <span class="texhtml">''x''<sup>(0)</sup> = [0,0]<sup>''T ''</sup>''a'''n'''d''</span> <span class="texhtml">''H''<sub>0</sub> = ''I''<sub>2</sub></span>
      <span class="texhtml">''I''''n''</span> <span class="texhtml">''t''''h''''i''''s''</span> <span class="texhtml">''c''''a''''s''''e'',</span>
+
    <span class="texhtml">''I''''n'''</span>''' <span class="texhtml">''t''</span>'''''h'''i'''s'' <span class="texhtml">''c'''a'''s'''e'''''<b>,</b></span>
      <math>g^{(k)} = \begin{bmatrix}
+
    <math>g^{(k)} = \begin{bmatrix}
 
   1 & 1 \\
 
   1 & 1 \\
 
   1 & 2
 
   1 & 2
Line 91: Line 90:
  
 
       <span class="texhtml">''H''''e''''n''''c''''e'',</span>  
 
       <span class="texhtml">''H''''e''''n''''c''''e'',</span>  
      <math>g^{(0)} = \begin{bmatrix}
+
    <math>g^{(0)} = \begin{bmatrix}
 
   -2  \\
 
   -2  \\
 
   -1
 
   -1
Line 107: Line 106:
 
<br>  
 
<br>  
  
       <span class="texhtml">''B''''e''''c''''a''''u''''s''''e''</span> <span class="texhtml">''f''</span> <span class="texhtml">''i''''s''</span> <span class="texhtml">''a''</span> <span class="texhtml">''q''''u''''a''''d''''r''''a''''t''''i''''c''</span> <span class="texhtml">''f''''u''''n''''c''''t''''i''''o''''n'',</span>
+
       <span class="texhtml">''B'''e'''c'''a'''u'''s'''e ''</span><span class="texhtml">''f ''</span><span class="texhtml">''i'''s '''''</span>'''<span class="texhtml">''a''</span><span class="texhtml">''q''</span>'''''u'''a'''d'''r'''a'''t'''i'''c'''''<b><span class="texhtml">''f''</span></b>''u'''n'''c'''t'''i'''o'''n'',
  
 
       <math>\alpha_0 = argminf(x^{(0)} + \alpha d^{(0)}) = - \frac{g^{(0)^T}d^{(0)}}{d^{(0)^T}Qd^{(0)}} = - \frac{\begin{bmatrix}
 
       <math>\alpha_0 = argminf(x^{(0)} + \alpha d^{(0)}) = - \frac{g^{(0)^T}d^{(0)}}{d^{(0)^T}Qd^{(0)}} = - \frac{\begin{bmatrix}
Line 135: Line 134:
 
   \frac{1}{2}
 
   \frac{1}{2}
 
  \end{bmatrix}</math>
 
  \end{bmatrix}</math>
      <math>g^{(1)} =\begin{bmatrix}
+
    <math>g^{(1)} =\begin{bmatrix}
 
   1 & 1 \\
 
   1 & 1 \\
 
   1 & 2
 
   1 & 2
Line 153: Line 152:
 
<br>  
 
<br>  
  
       <span class="texhtml">''O''''b''''s''''e''''r''''v''''e''</span> <span class="texhtml">''t''''h''''a''''t'':</span>
+
       <span class="texhtml">''O''''b''''s''''e''''r''''v''''e''</span> <span class="texhtml">''t''''h''''a''''t'''''<b>:</b></span>
      <math>\Delta x^{(0)} \Delta x^{(0)^T} = \begin{bmatrix}
+
    <math>\Delta x^{(0)} \Delta x^{(0)^T} = \begin{bmatrix}
 
   1  \\
 
   1  \\
 
   \frac{1}{2}  
 
   \frac{1}{2}  
Line 163: Line 162:
 
   \frac{1}{2}  & \frac{1}{4}  
 
   \frac{1}{2}  & \frac{1}{4}  
 
  \end{bmatrix} </math>
 
  \end{bmatrix} </math>
      <math> \Delta x^{(0)^T} \Delta g^{(0)} = \begin{bmatrix}
+
    <math> \Delta x^{(0)^T} \Delta g^{(0)} = \begin{bmatrix}
 
   1  & \frac{1}{2}  
 
   1  & \frac{1}{2}  
 
  \end{bmatrix}\begin{bmatrix}
 
  \end{bmatrix}\begin{bmatrix}
Line 169: Line 168:
 
   2  
 
   2  
 
  \end{bmatrix}  = \frac{5}{2}</math>
 
  \end{bmatrix}  = \frac{5}{2}</math>
      <math>H_0 \Delta g^{(0)} = \begin{bmatrix}
+
    <math>H_0 \Delta g^{(0)} = \begin{bmatrix}
 
   1 & 0 \\
 
   1 & 0 \\
 
   0 & 1
 
   0 & 1
Line 182: Line 181:
 
   3 & 4
 
   3 & 4
 
  \end{bmatrix}</math>
 
  \end{bmatrix}</math>
      <math>\Delta g^{(0)^T}H_0 \Delta g^{(0)} = \begin{bmatrix}
+
    <math>\Delta g^{(0)^T}H_0 \Delta g^{(0)} = \begin{bmatrix}
 
   \frac{3}{2}  & 2  
 
   \frac{3}{2}  & 2  
 
  \end{bmatrix} \begin{bmatrix}
 
  \end{bmatrix} \begin{bmatrix}
Line 190: Line 189:
 
   \frac{3}{2}  \\ 2  
 
   \frac{3}{2}  \\ 2  
 
  \end{bmatrix} = \frac{25}{4}</math>
 
  \end{bmatrix} = \frac{25}{4}</math>
      <span class="texhtml">''U''''s''''i''''n''''g''</span> <span class="texhtml">''t''''h''''e''</span> <span class="texhtml">''a''''b''''o''''v''''e'',</span> <span class="texhtml">''n''''o''''w''</span> <span class="texhtml">''w''''e''</span> <span class="texhtml">''c''''o''''m''''p''''u''''t''''e''</span>
+
    <font face="serif" size="3">''Using the above, now we have''</font>
      <math>H_1 = H_0 + \frac{\Delta x^{(0)} \Delta x^{(0)^T}}{\Delta x^{(0)^T} \Delta g^{(0)}} - \frac{(H_0 \Delta g^{(0)})(H_0 \Delta g^{(0)})^T}{\Delta g^{(0)^T}H_0 \Delta g^{(0)} }  = \begin{bmatrix}
+
    <math>H_1 = H_0 + \frac{\Delta x^{(0)} \Delta x^{(0)^T}}{\Delta x^{(0)^T} \Delta g^{(0)}} - \frac{(H_0 \Delta g^{(0)})(H_0 \Delta g^{(0)})^T}{\Delta g^{(0)^T}H_0 \Delta g^{(0)} }  = \begin{bmatrix}
 
   1 & 0 \\
 
   1 & 0 \\
 
   0 & 1
 
   0 & 1
Line 205: Line 204:
 
  \end{bmatrix}</math>
 
  \end{bmatrix}</math>
  
       <span class="texhtml">''T''''h''''e''''n''</span> <span class="texhtml">''w''''e''</span> <span class="texhtml">''h''''a''''v''''e'',</span>
+
       <span class="texhtml">''T'hen we have''</span><span class="texhtml">''','''</span>
      <math>d^{(1)} = -H_1 g^{(0)} = - \begin{bmatrix}
+
    <math>d^{(1)} = -H_1 g^{(0)} = - \begin{bmatrix}
 
   \frac{26}{25} & -\frac{7}{25} \\
 
   \frac{26}{25} & -\frac{7}{25} \\
 
   -\frac{7}{25} & \frac{23}{50}
 
   -\frac{7}{25} & \frac{23}{50}
Line 246: Line 245:
 
   -\frac{3}{2}
 
   -\frac{3}{2}
 
  \end{bmatrix}</math>
 
  \end{bmatrix}</math>
      <math>g^{(2)} = \begin{bmatrix}
+
    <math>g^{(2)} = \begin{bmatrix}
 
   1 & 1 \\
 
   1 & 1 \\
 
   1 & 2
 
   1 & 2
Line 257: Line 256:
 
  \end{bmatrix}</math>
 
  \end{bmatrix}</math>
  
       <span class="texhtml">''N''''o''''t''''e''</span> <span class="texhtml">''t''''h''''a''''t''</span> <span class="texhtml">''w''''e''</span> <span class="texhtml">''h''''a''''v''''e''</span> <math>d^{(0)^T}Qd^{(0)} = 0;</math>
+
       <span class="texhtml">''Note that we have''</span> <math>d^{(0)^T}Qd^{(0)} = 0;</math>
      <span class="texhtml">''t''''h''''a''''t''</span> <span class="texhtml">''i''''s'',</span> <math>d^{(0)} = \begin{bmatrix}
+
    <span class="texhtml">''that is''</span>, <math>d^{(0)} = \begin{bmatrix}
 
   2  \\
 
   2  \\
 
   1
 
   1
Line 264: Line 263:
 
   \frac{4}{5}  \\
 
   \frac{4}{5}  \\
 
   -\frac{3}{5}
 
   -\frac{3}{5}
  \end{bmatrix}</math> <span class="texhtml">''a''''r''''e''</span> <span class="texhtml">''Q'' − ''c''''o''''n''''j''''u''''g''''a''''t''''e''</span> <span class="texhtml">''d''''i''''r''''e''''c''''t''''i''''o''''n''''s''.</span>
+
  \end{bmatrix}</math> <span class="texhtml">''are Q-conjugate directions''</span><span class="texhtml">'''.'''</span>
  
 
<br>  
 
<br>  
  
'''3. (20pts) For the system of linear equations,<span class="texhtml">''A''''x'' = ''b''</span>, where'''
+
'''3. (20pts) For the system of linear equations,<span class="texhtml">''A'''</span>'''''x'' = ''b'', where  
  
 
<math>A = \begin{bmatrix}
 
<math>A = \begin{bmatrix}
Line 350: Line 349:
 
<br> '''4. (20pts) Use any simplex method to solve the following linear program. '''  
 
<br> '''4. (20pts) Use any simplex method to solve the following linear program. '''  
  
             <span class="texhtml">''M''''a''''x''''i''''m''''i''''z''''e''</span>    <span class="texhtml">''x''<sub>1</sub> + 2''x''<sub>2</sub></span>
+
             <span class="texhtml">''Maximize''</span>'''   <span class="texhtml">''x''<sub>1</sub> + 2''x''<sub>2</sub></span>'''
          <span class="texhtml">''S''''u''''b''''j''''e''''c''''t''</span> <span class="texhtml">''t''''o''</span>   <math>-2x_1+x_2 \le 2</math>
+
          <span class="texhtml">''S'ubject to''</span>'''    <math>-2x_1+x_2 \le 2</math>'''
                          <math>x_1-x_2 \ge -3</math>
+
                        <math>x_1-x_2 \ge -3</math>
                          <math>x_1 \le -3</math>
+
                        <math>x_1 \le -3</math>
                          <math>x_1 \ge 0, x_2 \ge 0.</math>
+
                        <math>x_1 \ge 0, x_2 \ge 0.</math>
  
 
<br>  
 
<br>  
Line 361: Line 360:
  
 
         We can transfer the problem to the following standard form:
 
         We can transfer the problem to the following standard form:
          <span class="texhtml">''M''''i''''n''''i''''m''''i''''z''''e''</span>    <span class="texhtml"> − ''x''<sub>1</sub> − 2''x''<sub>2</sub></span>
+
          <span class="texhtml">''Mnimize''</span>'''   <span class="texhtml"> − ''x''<sub>1</sub> − 2''x''<sub>2</sub></span>'''
          <span class="texhtml">''S''''u''''b''''j''''e''''c''''t''</span> <span class="texhtml">''t''''o''</span>   <span class="texhtml"> − 2''x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>3</sub> = 2</span>
+
          <span class="texhtml">''Sbject to''</span>'''    <span class="texhtml"> − 2''x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>3</sub> = 2</span>'''
                          <span class="texhtml"> − ''x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>4</sub> = 3</span>
+
                        <span class="texhtml"> − ''x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>4</sub> = 3</span>
                          <span class="texhtml">''x''<sub>1</sub> + ''x''<sub>5</sub> = 3</span>
+
                        <span class="texhtml">''x''<sub>1</sub> + ''x''<sub>5</sub> = 3</span>
                          <math>x_1, x_2, x_3, x_4, x_5 \ge 0.</math>
+
                        <math>x_1, x_2, x_3, x_4, x_5 \ge 0.</math>
  
 
         We form the corresponding tableau for the problem
 
         We form the corresponding tableau for the problem
        <math>\begin{matrix}
+
      <math>\begin{matrix}
 
   a_1 & a_2 & a_3 & a_4 & a_5 & b \\
 
   a_1 & a_2 & a_3 & a_4 & a_5 & b \\
 
   -2 & 1& 1 &0& 0& 2 \\
 
   -2 & 1& 1 &0& 0& 2 \\
Line 375: Line 374:
 
   -1& -2 &0& 0& 0& 0
 
   -1& -2 &0& 0& 0& 0
 
  \end{matrix}</math>
 
  \end{matrix}</math>
       
+
       
      Since it is already in canonical form. Because <span class="texhtml">''r''<sub>2</sub> =  − 7</span>, we bring <span class="texhtml">''a''<sub>2</sub></span> into the basis.
+
    Since it is already in canonical form. Because <span class="texhtml">''r''<sub>2</sub> =  − 7</span>, we bring <span class="texhtml">''a''<sub>2</sub></span> into the basis.
  
 
       After computing the ratios, we pivot about the (1,2) element of the tableau to obtain
 
       After computing the ratios, we pivot about the (1,2) element of the tableau to obtain
        <math>\begin{matrix}
+
      <math>\begin{matrix}
 
   a_1 & a_2 & a_3 & a_4 & a_5 & b \\
 
   a_1 & a_2 & a_3 & a_4 & a_5 & b \\
 
   -2 & 1& 1 &0& 0& 2 \\
 
   -2 & 1& 1 &0& 0& 2 \\
Line 388: Line 387:
  
 
       Similarly, we pivot about the (2,1) element to obtain  
 
       Similarly, we pivot about the (2,1) element to obtain  
        <math>\begin{matrix}
+
      <math>\begin{matrix}
 
   a_1 & a_2 & a_3 & a_4 & a_5 & b \\
 
   a_1 & a_2 & a_3 & a_4 & a_5 & b \\
 
   0 & 1& -1 &2& 0& 4 \\
 
   0 & 1& -1 &2& 0& 4 \\
Line 397: Line 396:
  
 
       Similarly, we pivot about the (3,3) element to obtain  
 
       Similarly, we pivot about the (3,3) element to obtain  
        <math>\begin{matrix}
+
      <math>\begin{matrix}
 
   a_1 & a_2 & a_3 & a_4 & a_5 & b \\
 
   a_1 & a_2 & a_3 & a_4 & a_5 & b \\
 
   0 & 1& 0 &1& 1& 6 \\
 
   0 & 1& 0 &1& 1& 6 \\
Line 409: Line 408:
 
<br> '''5.(20pts) Solve the following problem:'''  
 
<br> '''5.(20pts) Solve the following problem:'''  
  
             <span class="texhtml">''M''''i''''n''''i''''m''''i''''z''''e''</span>    <math>-x_1^2 + 2x_2</math>
+
             <span class="texhtml">''Minimize''</span>'''   <math>-x_1^2 + 2x_2</math>'''
          <span class="texhtml">''S''''u''''b''''j''''e''''c''''t''</span> <span class="texhtml">''t''''o''</span>   <math>x_1^2+x_2^2 \le 1</math>
+
          <span class="texhtml">''Subject to''</span>'''    <math>x_1^2+x_2^2 \le 1</math>'''
                          <math> x_1 \ge 0</math>
+
                        <math> x_1 \ge 0</math>
                          <math>x_2 \ge 0</math>
+
                        <math>x_2 \ge 0</math>
  
 
'''(i)(10pts) Find the points that satisfy the KKT condition.'''  
 
'''(i)(10pts) Find the points that satisfy the KKT condition.'''  
Line 419: Line 418:
  
 
         Standard Form:
 
         Standard Form:
          <span class="texhtml">''M''''i''''n''''i''''m''''i''''z''''e''</span>    <math>-x_1^2 + 2x_2</math>
+
          <span class="texhtml">''Minimize''</span>'''   <math>-x_1^2 + 2x_2</math>'''
          <span class="texhtml">''S''''u''''b''''j''''e''''c''''t''</span> <span class="texhtml">''t''''o''</span>    <math>g_1(x) = x_1^2+x_2^2 - 1 \le 0</math>
+
          <span class="texhtml">''Su''</span>'''   <math>g_1(x) = x_1^2+x_2^2 - 1 \le 0</math>'''
                          <math>g_2(x) = -x_2 \le 0</math>
+
                        <math>g_2(x) = -x_2 \le 0</math>
  
 
         The KKT Condition.
 
         The KKT Condition.
        <math>1. \mu _1, \mu _2 \ge 0</math>  
+
      <math>1. \mu _1, \mu _2 \ge 0</math>  
        <span class="texhtml">2. − 2''x''<sub>1</sub> + 2''x''<sub>1</sub>μ<sub>1</sub> = 0</span>  
+
      <span class="texhtml">2. − 2''x''<sub>1</sub> + 2''x''<sub>1</sub>μ<sub>1</sub> = 0</span>  
          <span class="texhtml">2.2 + 2''x''<sub>2</sub>μ<sub>1</sub> − μ<sub>2</sub> = 0</span>  
+
        <span class="texhtml">2.2 + 2''x''<sub>2</sub>μ<sub>1</sub> − μ<sub>2</sub> = 0</span>  
        <math>3. (x_1^2+x_2^2-1)\mu_1 - x_2\mu _2 = 0</math>  
+
      <math>3. (x_1^2+x_2^2-1)\mu_1 - x_2\mu _2 = 0</math>  
        <math>4. g_1(x),g_2(x) \le 0</math>  
+
      <math>4. g_1(x),g_2(x) \le 0</math>  
  
 
<br>  
 
<br>  
  
 
         Case 1:
 
         Case 1:
        <span class="texhtml">''I''''f''</span> <span class="texhtml">μ<sub>1</sub> = 0</span> and <span class="texhtml">μ<sub>2</sub> = 0,</span>
+
      <span class="texhtml">''I''''f'''</span>''' <span class="texhtml">μ<sub>1</sub> = 0</span> and <span class="texhtml">μ<sub>2</sub> = 0,</span>'''
              <span class="texhtml">''t''''h''''e''''n'',2 = 0</span>which is impossible.
+
            <span class="texhtml">''t''''h''''e''''n'''''<b>,2 = 0</b></span>'''which is impossible.'''
       
+
     
        Case 2:
+
      Case 2:
        <span class="texhtml">''I''''f''</span> <span class="texhtml">μ<sub>1</sub> = 0</span> and <math>\mu_2 \not= 0,</math>
+
      <span class="texhtml">''I''''f'''</span>''' <span class="texhtml">μ<sub>1</sub> = 0</span> and <math>\mu_2 \not= 0,</math>'''
              <span class="texhtml">''t''''h''''e''''n'',μ<sub>2</sub> = 2,''x''<sub>1</sub> = 0,''x''<sub>2</sub> = 0.</span>.
+
            <span class="texhtml">''t''''h''''e''''n'''''<b>,μ<sub>2</sub> = 2,''x''<sub>1</sub> = 0,''x''<sub>2</sub> = 0.</b></span>'''.'''
  
 
         Case 3:
 
         Case 3:
        <span class="texhtml">''I''''f''</span> <math>\mu_1 \not= 0</math> and <span class="texhtml">μ<sub>2</sub> = 0,</span>
+
      <span class="texhtml">''I''''f'''</span>''' <math>\mu_1 \not= 0</math> and <span class="texhtml">μ<sub>2</sub> = 0,</span>'''
              <math>then, x_1^2 + x_2^2 = 1 </math>
+
            <math>then, x_1^2 + x_2^2 = 1 </math>
                        <math>if x1 \not= 0, then \mu_1 = 1, x_2 = -1 </math>which is impossible.
+
                      <math>if x1 \not= 0, then \mu_1 = 1, x_2 = -1 </math>which is impossible.
                        <span class="texhtml">''i''''f''''x''1 = 0,''t''''h''''e''''n''''x''<sub>2</sub> = 1,μ<sub>1</sub> =  − 1</span>which is impossible.
+
                      <span class="texhtml">''i'''f '''x''1 = 0,''then x''<sub>2</sub> = 1,μ<sub>1</sub> =  − 1</span>which is impossible.
  
 
         Case 4:
 
         Case 4:
        <span class="texhtml">''I''''f''</span> <math>\mu_1 \not= 0</math> and <math>\mu_2 \not= 0,</math>
+
      <span class="texhtml">''I''''f'''</span>''' <math>\mu_1 \not= 0</math> and <math>\mu_2 \not= 0,</math>'''
              <math>then, x_2 = 0, x_1^2 + x_2^2 = 1. So,  x_1 = 1, \mu_1 = 1, \mu_2 = 2. </math>.
+
            <math>then, x_2 = 0, x_1^2 + x_2^2 = 1. So,  x_1 = 1, \mu_1 = 1, \mu_2 = 2. </math>.
  
 
         Therefore, there are two points that satisfy KKT condition.
 
         Therefore, there are two points that satisfy KKT condition.
 
   
 
   
        <math>\begin{bmatrix}
+
      <math>\begin{bmatrix}
 
   \mu_1 ^{\ast}= 0 \\ \mu_2 ^{\ast}= 2 \\ x_1^{\ast}= 0 \\x_2^{\ast}= 0  
 
   \mu_1 ^{\ast}= 0 \\ \mu_2 ^{\ast}= 2 \\ x_1^{\ast}= 0 \\x_2^{\ast}= 0  
 
  \end{bmatrix}and \begin{bmatrix}
 
  \end{bmatrix}and \begin{bmatrix}
Line 463: Line 462:
  
 
         Apply SOSC to the first point.
 
         Apply SOSC to the first point.
        <math>\nabla g_2(x)^t y = 0</math>
+
      <math>\nabla g_2(x)^t y = 0</math>
        <math>\begin{bmatrix}
+
      <math>\begin{bmatrix}
 
   0 & -1
 
   0 & -1
 
  \end{bmatrix} y = 0</math>
 
  \end{bmatrix} y = 0</math>
        <math>y = \begin{bmatrix}
+
      <math>y = \begin{bmatrix}
 
   a \\ 0
 
   a \\ 0
 
  \end{bmatrix},  a\not= 0</math>
 
  \end{bmatrix},  a\not= 0</math>
Line 474: Line 473:
 
   -2 & 0 \\ 0 & 0  
 
   -2 & 0 \\ 0 & 0  
 
  \end{bmatrix} </math>
 
  \end{bmatrix} </math>
        <span class="texhtml">''C''''h''''e''''c''''k''</span><span class="texhtml">''y''<sup>''t''</sup>''L''(''x'',μ)''y''</span>
+
      <span class="texhtml">''Check ''</span><span class="texhtml">''y''<sup>''t''</sup>''L''(''x'',μ)''y''</span>
        <math>\begin{bmatrix}
+
      <math>\begin{bmatrix}
 
   a & 0
 
   a & 0
 
  \end{bmatrix}\begin{bmatrix}
 
  \end{bmatrix}\begin{bmatrix}
Line 486: Line 485:
  
 
         Apply SOSC to the second point.
 
         Apply SOSC to the second point.
        <math>\nabla g_1(x)^t y = 0, </math>
+
      <math>\nabla g_1(x)^t y = 0, </math>
  
 
         <math>\begin{bmatrix}
 
         <math>\begin{bmatrix}
 
   2x_1 & 2x_2
 
   2x_1 & 2x_2
 
  \end{bmatrix} y = 0</math>
 
  \end{bmatrix} y = 0</math>
        <math>y = \begin{bmatrix}
+
      <math>y = \begin{bmatrix}
 
   0 \\ a
 
   0 \\ a
 
  \end{bmatrix} where a\not= 0</math>
 
  \end{bmatrix} where a\not= 0</math>
Line 502: Line 501:
 
   0 & 0 \\ 0 & 2  
 
   0 & 0 \\ 0 & 2  
 
  \end{bmatrix} </math>
 
  \end{bmatrix} </math>
        <span class="texhtml">''C''''h''''e''''c''''k''</span><span class="texhtml">''y''<sup>''t''</sup>''L''(''x'',μ)''y''</span>
+
      <span class="texhtml">''Check ''</span><span class="texhtml">''y''<sup>''t''</sup>''L''(''x'',μ)''y''</span>
        <math>\begin{bmatrix}
+
      <math>\begin{bmatrix}
 
   0 & a
 
   0 & a
 
  \end{bmatrix}\begin{bmatrix}
 
  \end{bmatrix}\begin{bmatrix}
Line 510: Line 509:
 
   0 \\ a
 
   0 \\ a
 
  \end{bmatrix} = 2a^2 \gneq 0</math> that implies
 
  \end{bmatrix} = 2a^2 \gneq 0</math> that implies
        <math>\begin{bmatrix}
+
      <math>\begin{bmatrix}
 
   x^{\ast} = 1\\ x^{\ast} = 0  
 
   x^{\ast} = 1\\ x^{\ast} = 0  
 
  \end{bmatrix}</math> is the minimized point.
 
  \end{bmatrix}</math> is the minimized point.

Revision as of 19:11, 25 January 2013

AC - 3 August 2012 QE

1. (20 pts)

(i) (10 pts) Find the factor by which the uncertainty range is reduced when using the Fibonacci method. Assume that the last step has the form

$ \begin{align} 1- \rho_{N-1} = \frac{F_{2}}{F_{3}} = \frac{2}{3}, \end{align} $

where N − 1 is the number of steps performed in the uncertainty range reduction process.



Solution:

   The reduction factor is (1 − ρ1)(1 − ρ2)(1 − ρ3)...(1 − ρN − 1)
 Since 
 $  1- \rho_{N-1} = \frac{F_{2}}{F_{3}} = \frac{2}{3},  $
 we have 
 $  1- \rho_{N-2} = \frac{F_{3}}{F_{4}} $     and so on.
   Then, we have
 $  (1- \rho_{1})(1- \rho_{2})(1- \rho_{3})...(1- \rho_{N-1}) = \frac{F_{N}}{F_{N+1}}   \frac{F_{N-1}}{F_{N}}   ...   \frac{F_{2}}{F_{3}} = \frac{F_{2}}{F_{N+1}} $
 Therefore, the reduction factor is
 $ \frac{2}{F_{N+1}} $


Solution 2:

The uncertainty interval is reduced by $ (1- \rho_{1})(1- \rho_{2})(1- \rho_{3})...(1- \rho_{N-1}) = \frac{F_{N}}{F_{N+1}} \frac{F_{N-1}}{F_{N}} ... \frac{F_{2}}{F_{3}} = \frac{F_{2}}{F_{N+1}} $



(ii)(10 pts) It is known that the minimizer of a certain function f(x) is located in the interval[-5, 15]. What is the minimal number of iterations of the Fibonacci method required to box in the minimizer within the range 1.0? Assume that the last useful value of the factor reducing the uncertainty range is 2/3, that is

$ 1- \rho_{N-1} = \frac{F_{2}}{F_{3}} = \frac{2}{3}, $


Solution:

      Final Range: 1.0; Initial Range: 20.
      $  \frac{2}{F_{N+1}} \le \frac{1.0}{20} $, or $  F_{N+1} \ge 40 $ 
      So, N + 1 = 9
      Therefore, the minimal iterations is N-1 or 7.


Solution 2:

Since the final range is 1.0 and the initial range is 20, we can say Failed to parse (syntax error): \frac{2}{F_{N+1}} \le \frac{1.0}{20} or equivalently F_{N+1}} \ge 40

From the inequality, we get $ F_{N+1} \ge 40 , so N+1=9 $. Therefore the minimum number of iteration is N-1=7


2. (20pts) Employ the DFP method to construct a set of Q-conjugate directions using the function

      $ f = \frac{1}{2}x^TQx - x^Tb+c  $
      $   =\frac{1}{2}x^T  \begin{bmatrix}   1 & 1 \\   1 & 2  \end{bmatrix}x-x^T\begin{bmatrix}   2  \\   1  \end{bmatrix} + 3. $

Where x(0) is arbitrary.


Solution:

      $ f = \frac{1}{2}x^TQx - x^Tb+c  $
    Use initial  point x(0) = [0,0]T and H0 = I2
    I'n this case,
    $ g^{(k)} = \begin{bmatrix}   1 & 1 \\   1 & 2  \end{bmatrix} x^{(k)} - \begin{bmatrix}   2  \\   1  \end{bmatrix} $
      H'e'n'c'e, 
    $ g^{(0)} = \begin{bmatrix}   -2  \\   -1  \end{bmatrix}, $  $ d^{(0)} = -H_0g^{(0)} =- \begin{bmatrix}   1 & 0 \\   0 & 1  \end{bmatrix}\begin{bmatrix}   -2  \\   -1  \end{bmatrix} = \begin{bmatrix}   2  \\   1  \end{bmatrix} $


      Because f is aquadraticfunction,
      $ \alpha_0 = argminf(x^{(0)} + \alpha d^{(0)}) = - \frac{g^{(0)^T}d^{(0)}}{d^{(0)^T}Qd^{(0)}} = - \frac{\begin{bmatrix}   -2 & -1   \end{bmatrix}\begin{bmatrix}   2  \\   1  \end{bmatrix}}{\begin{bmatrix}   2 & 1\end{bmatrix}\begin{bmatrix}   1 & 1 \\   1 & 2  \end{bmatrix}\begin{bmatrix}   2  \\   1  \end{bmatrix}} = \frac{1}{2} $
      $ x^{(1)} = x^{(0)} + \alpha d^{(0)} = \frac{1}{2} \begin{bmatrix}   2  \\   1  \end{bmatrix} = \begin{bmatrix}   1  \\   \frac{1}{2}  \end{bmatrix} $
      $ \Delta x^{(0)} = x^{(1)}- x^{(0)} = \begin{bmatrix}   1  \\   \frac{1}{2}  \end{bmatrix} $
    $ g^{(1)} =\begin{bmatrix}   1 & 1 \\   1 & 2  \end{bmatrix} x^{(1)} - \begin{bmatrix}   2  \\   1  \end{bmatrix}= \begin{bmatrix}   -\frac{1}{2}  \\   1  \end{bmatrix} $
      $ \Delta g^{(0)} = g^{(1)} - g^{(0)} = \begin{bmatrix}   -\frac{3}{2}  \\   2  \end{bmatrix}  $


      O'b's'e'r'v'e t'h'a't:
    $ \Delta x^{(0)} \Delta x^{(0)^T} = \begin{bmatrix}   1  \\   \frac{1}{2}   \end{bmatrix} \begin{bmatrix}   1  & \frac{1}{2}   \end{bmatrix} = \begin{bmatrix}   1 & \frac{1}{2}  \\   \frac{1}{2}  & \frac{1}{4}   \end{bmatrix}  $
    $  \Delta x^{(0)^T} \Delta g^{(0)} = \begin{bmatrix}   1  & \frac{1}{2}   \end{bmatrix}\begin{bmatrix}   \frac{3}{2}   \\   2   \end{bmatrix}  = \frac{5}{2} $
    $ H_0 \Delta g^{(0)} = \begin{bmatrix}   1 & 0 \\   0 & 1  \end{bmatrix} \begin{bmatrix}   \frac{3}{2}   \\   2   \end{bmatrix} = \begin{bmatrix}   \frac{3}{2}   \\   2   \end{bmatrix}, $ $ (H_0 \Delta g^{(0)})(H_0 \Delta g^{(0)})^T = \begin{bmatrix}   \frac{9}{4}  & 3 \\   3 & 4  \end{bmatrix} $
    $ \Delta g^{(0)^T}H_0 \Delta g^{(0)} = \begin{bmatrix}   \frac{3}{2}  & 2   \end{bmatrix} \begin{bmatrix}   1 & 0 \\   0 & 1  \end{bmatrix} \begin{bmatrix}   \frac{3}{2}  \\ 2   \end{bmatrix} = \frac{25}{4} $
    Using the above, now we have
    $ H_1 = H_0 + \frac{\Delta x^{(0)} \Delta x^{(0)^T}}{\Delta x^{(0)^T} \Delta g^{(0)}} - \frac{(H_0 \Delta g^{(0)})(H_0 \Delta g^{(0)})^T}{\Delta g^{(0)^T}H_0 \Delta g^{(0)} }  = \begin{bmatrix}   1 & 0 \\   0 & 1  \end{bmatrix} + \begin{bmatrix}   \frac{2}{5} & \frac{1}{5} \\   \frac{1}{5} & \frac{1}{10}  \end{bmatrix} - \frac{25}{4}\begin{bmatrix}   \frac{9}{4} & 3 \\   3 & 4  \end{bmatrix} = \begin{bmatrix}   \frac{26}{25} & -\frac{7}{25} \\   -\frac{7}{25} & \frac{23}{50}  \end{bmatrix} $
      T'hen we have,
    $ d^{(1)} = -H_1 g^{(0)} = - \begin{bmatrix}   \frac{26}{25} & -\frac{7}{25} \\   -\frac{7}{25} & \frac{23}{50}  \end{bmatrix} \begin{bmatrix}   -\frac{1}{2}  \\   1  \end{bmatrix} = \begin{bmatrix}   \frac{4}{5}  \\   -\frac{3}{5}  \end{bmatrix} $
      $ \alpha_1 = argminf(x^{(1)} + \alpha d^{(1)}) = - \frac{g^{(1)^T}d^{(1)}}{d^{(1)^T}Qd^{(1)}} = - \frac{\begin{bmatrix}   -2 & 1   \end{bmatrix}\begin{bmatrix}   \frac{4}{5}  \\   -\frac{3}{5}  \end{bmatrix}}{\begin{bmatrix}   \frac{4}{5} & -\frac{3}{5}\end{bmatrix}\begin{bmatrix}   1 & 1 \\   1 & 2  \end{bmatrix}\begin{bmatrix}   \frac{4}{5}  \\   -\frac{3}{5}  \end{bmatrix}} = \frac{5}{2} $
      $ x^{(2)} = x^{(1)} + \alpha_1 d^{(1)} = \begin{bmatrix}   1  \\   \frac{1}{2}  \end{bmatrix} + \frac{5}{2}\begin{bmatrix}   \frac{4}{5}  \\   -\frac{3}{5}  \end{bmatrix} = \begin{bmatrix}   3  \\   -1  \end{bmatrix}  $
      $ \Delta x^{(1)} = x^{(2)} - x^{(1)} = \begin{bmatrix}   2  \\   -\frac{3}{2}  \end{bmatrix} $
    $ g^{(2)} = \begin{bmatrix}   1 & 1 \\   1 & 2  \end{bmatrix} x^{(0)} - \begin{bmatrix}   2  \\   1  \end{bmatrix} = \begin{bmatrix}   0  \\   0  \end{bmatrix} $
      Note that we have $ d^{(0)^T}Qd^{(0)} = 0; $
    that is, $ d^{(0)} = \begin{bmatrix}   2  \\   1  \end{bmatrix} $ a'n'd $ d^{(1)}  = \begin{bmatrix}   \frac{4}{5}  \\   -\frac{3}{5}  \end{bmatrix} $ are Q-conjugate directions.


'3. (20pts) For the system of linear equations,Ax = b, where

$ A = \begin{bmatrix} 1 & 0 &-1 \\ 0 & 1 & 0 \\ 0 & -1& 0 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} $

Find the minimum length vector $ x^{(\ast)} $ that minimizes $ \| Ax -b\|^{2}_2 $



Solutions:

      $ A = BC = \begin{bmatrix}   1 & 0  \\   0 & 1   \\   0 & -1  \end{bmatrix} \begin{bmatrix}   1 & 0 &-1  \\   0 & 1 & 0    \end{bmatrix} $
      $ B^{\dagger} = (B^T B)^{-1}B^T = \begin{bmatrix}   1 & 0 \\   0 & 2    \end{bmatrix}^{-1} \begin{bmatrix}   1 & 0 & 0  \\   0 & 1 & -1    \end{bmatrix} = \begin{bmatrix}   1 & 0 & 0  \\   0 & \frac{1}{2} & -\frac{1}{2}    \end{bmatrix} $
      $ C^{\dagger} = C^T(CC^T)^{-1} =\begin{bmatrix}   1 & 0  \\   0 & 1   \\   -1 & 0  \end{bmatrix} \begin{bmatrix}   2 & 0 \\   0 & 1    \end{bmatrix}^{-1} = \begin{bmatrix}   \frac{1}{2} & 0  \\   0 & 1   \\   -\frac{1}{2} & 0  \end{bmatrix}  $
      $ A^{\dagger} = C^{\dagger}B^{\dagger} =\begin{bmatrix}   \frac{1}{2} & 0  \\   0 & 1   \\   -\frac{1}{2} & 0  \end{bmatrix} \begin{bmatrix}   1 & 0 & 0  \\   0 & \frac{1}{2} & -\frac{1}{2}    \end{bmatrix} =  \begin{bmatrix}   \frac{1}{2} & 0 & 0  \\   0 & \frac{1}{2} & -\frac{1}{2}  \\   -\frac{1}{2} & 0 & 0  \end{bmatrix} $
      $  x^{\ast} = A^{\dagger} b = \begin{bmatrix}   \frac{1}{2} & 0 & 0  \\   0 & \frac{1}{2} & -\frac{1}{2}  \\   -\frac{1}{2} & 0 & 0  \end{bmatrix}\begin{bmatrix}   0 \\   \frac{1}{2} \\   1  \end{bmatrix} = \begin{bmatrix}   0 \\   \frac{1}{2} \\   0  \end{bmatrix} $



4. (20pts) Use any simplex method to solve the following linear program.

           Maximize    x1 + 2x2
         S'ubject to    $ -2x_1+x_2 \le 2 $
                        $ x_1-x_2 \ge -3 $
                        $ x_1 \le -3 $
                        $ x_1 \ge 0, x_2 \ge 0. $



Solution:

        We can transfer the problem to the following standard form:
         Mnimize    x1 − 2x2
         Sbject to     − 2x1 + x2 + x3 = 2
                        x1 + x2 + x4 = 3
                        x1 + x5 = 3
                        $ x_1, x_2, x_3, x_4, x_5 \ge 0. $
       We form the corresponding tableau for the problem
      $ \begin{matrix}   a_1 & a_2 & a_3 & a_4 & a_5 & b \\   -2 & 1& 1 &0& 0& 2 \\   -1& 1& 0 &1 &0 &3\\   1 &0& 0& 0& 1& 3\\   -1& -2 &0& 0& 0& 0  \end{matrix} $
       
    Since it is already in canonical form. Because r2 =  − 7, we bring a2 into the basis.
      After computing the ratios, we pivot about the (1,2) element of the tableau to obtain
      $ \begin{matrix}   a_1 & a_2 & a_3 & a_4 & a_5 & b \\   -2 & 1& 1 &0& 0& 2 \\   1& 0& -1 &1 &0 &1\\   1 &0& 0& 0& 1& 3\\   -5& 0 &2& 0& 0& 4  \end{matrix} $
      Similarly, we pivot about the (2,1) element to obtain 
      $ \begin{matrix}   a_1 & a_2 & a_3 & a_4 & a_5 & b \\   0 & 1& -1 &2& 0& 4 \\   1& 0& -1 &1 &0 &1\\   0 &0& 1& -1& 1& 2\\   0& 0 &-3& 5& 0& 9  \end{matrix} $
      Similarly, we pivot about the (3,3) element to obtain 
      $ \begin{matrix}   a_1 & a_2 & a_3 & a_4 & a_5 & b \\   0 & 1& 0 &1& 1& 6 \\   1& 0& 0 &0 &1 &3\\   0 &0& 1& -1& 1& 2\\   0& 0 &0& 2& 3& 15  \end{matrix} $
      Therefore, x1 = 3, x2 = 6, maximize the function.


5.(20pts) Solve the following problem:

           Minimize    $ -x_1^2 + 2x_2 $
         Subject to    $ x_1^2+x_2^2 \le 1 $
                        $  x_1 \ge 0 $
                        $ x_2 \ge 0 $

(i)(10pts) Find the points that satisfy the KKT condition.

Solution:

        Standard Form:
         Minimize    $ -x_1^2 + 2x_2 $
         Su   $ g_1(x) = x_1^2+x_2^2 - 1 \le 0 $
                        $ g_2(x) = -x_2 \le 0 $
        The KKT Condition.
      $ 1. \mu _1, \mu _2 \ge 0 $  
      2. − 2x1 + 2x1μ1 = 0  
        2.2 + 2x2μ1 − μ2 = 0  
      $ 3. (x_1^2+x_2^2-1)\mu_1 - x_2\mu _2 = 0 $  
      $ 4. g_1(x),g_2(x) \le 0 $  


        Case 1:
      I'f μ1 = 0 and μ2 = 0,
            t'h'e'n,2 = 0which is impossible.
      
      Case 2:
      I'f μ1 = 0 and $ \mu_2 \not= 0, $
            t'h'e'n2 = 2,x1 = 0,x2 = 0..
        Case 3:
      I'f $ \mu_1 \not= 0 $ and μ2 = 0,
            $ then, x_1^2 + x_2^2 = 1  $
                      $ if x1 \not= 0, then \mu_1 = 1, x_2 = -1  $which is impossible.
                      if x1 = 0,then x2 = 1,μ1 =  − 1which is impossible.
        Case 4:
      I'f $ \mu_1 \not= 0 $ and $ \mu_2 \not= 0, $
            $ then, x_2 = 0, x_1^2 + x_2^2 = 1. So,  x_1 = 1, \mu_1 = 1, \mu_2 = 2.  $.
        Therefore, there are two points that satisfy KKT condition.

      $ \begin{bmatrix}   \mu_1 ^{\ast}= 0 \\ \mu_2 ^{\ast}= 2 \\ x_1^{\ast}= 0 \\x_2^{\ast}= 0   \end{bmatrix}and \begin{bmatrix}   \mu_1 ^{\ast}= 1 \\ \mu_2 ^{\ast}= 2 \\ x_1^{\ast}= 1 \\x_2^{\ast}= 0   \end{bmatrix}  $ 


(ii)(10pts)Apply the SONC and SOSC to determine the nature of the critical points from the previous part.

Solution:

        Apply SOSC to the first point.
      $ \nabla g_2(x)^t y = 0 $
      $ \begin{bmatrix}   0 & -1  \end{bmatrix} y = 0 $
      $ y = \begin{bmatrix}   a \\ 0  \end{bmatrix},  a\not= 0 $
        $ L(x,\mu) = F(x) + \mu_2 G_2(x) =\begin{bmatrix}   -2 & 0 \\ 0 & 0   \end{bmatrix}  $
      Check ytL(x,μ)y
      $ \begin{bmatrix}   a & 0  \end{bmatrix}\begin{bmatrix}   -2 & 0 \\ 0 & 0   \end{bmatrix} \begin{bmatrix}   a \\ 0  \end{bmatrix} = -2a^2 \lneq 0 $ which means SOSC fails.


        Apply SOSC to the second point.
      $ \nabla g_1(x)^t y = 0,  $
        $ \begin{bmatrix}   2x_1 & 2x_2  \end{bmatrix} y = 0 $
      $ y = \begin{bmatrix}   0 \\ a  \end{bmatrix} where a\not= 0 $
        $ L(x,\mu) = F(x) + \mu_1 G_1(x) + \mu_2 G_2(x) =\begin{bmatrix}   -2 & 0 \\ 0 & 0   \end{bmatrix}  + \begin{bmatrix}   2 & 0 \\ 0 & 2    \end{bmatrix}  = \begin{bmatrix}   0 & 0 \\ 0 & 2   \end{bmatrix}  $
      Check ytL(x,μ)y
      $ \begin{bmatrix}   0 & a  \end{bmatrix}\begin{bmatrix}   0 & 0 \\ 0 & 2   \end{bmatrix} \begin{bmatrix}   0 \\ a  \end{bmatrix} = 2a^2 \gneq 0 $ that implies
      $ \begin{bmatrix}   x^{\ast} = 1\\ x^{\ast} = 0   \end{bmatrix} $ is the minimized point.

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett