Line 7: | Line 7: | ||
<br> | <br> | ||
<br> | <br> | ||
− | <math> | + | A = <math>\left(\begin{array}{cccc}4&3\\3&2\end{array}\right)</math> |
<br> | <br> | ||
− | <math>A | + | A<sup>-1</sup> = <math>\left(\begin{array}{cccc}-2&3\\3&-4\end{array}\right)</math> |
+ | |||
+ | <br> | ||
+ | |||
+ | AA<sup>-1</sup> = <math>\left(\begin{array}{cccc}4&3\\3&2\end{array}\right)</math><math>\left(\begin{array}{cccc}-2&3\\3&-4\end{array}\right)</math> = <math>\left(\begin{array}{cccc}1&0\\0&1\end{array}\right)</math> | ||
+ | |||
+ | <br> | ||
+ | |||
+ | and A<sup>-1</sup>A = </math><math>\left(\begin{array}{cccc}-2&3\\3&-4\end{array}\right)</math><math>\left(\begin{array}{cccc}4&3\\3&2\end{array}\right)</math> = <math>\left(\begin{array}{cccc}1&0\\0&1\end{array}\right)</math> | ||
+ | |||
<h3> Theorem 1 </h3> | <h3> Theorem 1 </h3> |
Revision as of 06:57, 10 December 2012
Inverse of a Matrix
An n x n matrix A is said to have an inverse provided there exists an n x n matrix B such that AB = BA = In. We call B the inverse of A and denote it as A-1. Thus, AA-1 = A-1A = In. In this case, A is also called nonsingular.
Example.
A = $ \left(\begin{array}{cccc}4&3\\3&2\end{array}\right) $
A-1 = $ \left(\begin{array}{cccc}-2&3\\3&-4\end{array}\right) $
AA-1 = $ \left(\begin{array}{cccc}4&3\\3&2\end{array}\right) $$ \left(\begin{array}{cccc}-2&3\\3&-4\end{array}\right) $ = $ \left(\begin{array}{cccc}1&0\\0&1\end{array}\right) $
and A-1A = </math>$ \left(\begin{array}{cccc}-2&3\\3&-4\end{array}\right) $$ \left(\begin{array}{cccc}4&3\\3&2\end{array}\right) $ = $ \left(\begin{array}{cccc}1&0\\0&1\end{array}\right) $
Theorem 1
The inverse of a matrix, if it exists, is unique
Theorem 2
If A and B are both nonsingular n x n matrices (i.e. invertible), then AB is nonsingular and (AB)-1 = B-1A-1.