Line 3: Line 3:
 
Given the matrix A, B, and C,
 
Given the matrix A, B, and C,
 
<math>A=\left[\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right]</math>
 
<math>A=\left[\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right]</math>
<math>B=\left[\begin{array}{cccc}1&2&3\\5&6&7\\4&8&9\end{array}\right]</math>
+
<math>B=\left[\begin{array}{cccc}1&2\\5&6\\3&4\\7&8\end{array}\right]</math>

Revision as of 09:27, 14 November 2012

Matrix Multiplication and coordinate systems:

Given the matrix A, B, and C, $ A=\left[\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right] $ $ B=\left[\begin{array}{cccc}1&2\\5&6\\3&4\\7&8\end{array}\right] $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett