Line 25: Line 25:
  
 
<math>\color{blue}
 
<math>\color{blue}
\text{and let } P_{\theta}(\rho) \text{ be the continuous-time Fourier transform of } p_{\theta}(r)  \text{ given by}
+
\text{and let } p_{\theta}(r) \text{ be the continuous-time Fourier transform of } p_{\theta}(r)  \text{ given by}
 
</math><br>
 
</math><br>
 
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<math>\color{blue}
 
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp; &nbsp; &nbsp; &nbsp;<math>\color{blue}
P_{\theta}(\rho)  = \int_{-\infty}^{\infty}{p_{\theta}(r)e^{-j2\pi(\rho r)}dr}.
+
p_{\theta}(r)  = \int_{-\infty}^{\infty}{p_{\theta}(r)e^{-j2\pi(\rho r)}dr}.
 
</math><br>
 
</math><br>
  
Line 39: Line 39:
  
 
<math>
 
<math>
P_{\theta}(\rho)  = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta, r sin\theta + z cos \theta) dz}
+
p_{\theta}(r)  = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta, r sin\theta + z cos \theta) dz}
 
</math>
 
</math>
  
Line 79: Line 79:
  
 
<math>
 
<math>
P_{\theta}(\rho)  = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta, r sin\theta + z cos \theta) dz}
+
p_{\theta}(r)  = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta, r sin\theta + z cos \theta) dz}
 
</math>
 
</math>
  
  
 
<math>
 
<math>
P_{\theta}(\rho)  = \int_{-\infty}^{+\infty}{\delta(g(u)) \delta(u) \frac{du}{|sin\theta|}} = \frac{\delta(u=0)}{|sin\theta|}
+
p_{\theta}(r)  = \int_{-\infty}^{+\infty}{\delta(g(u)) \delta(u) \frac{du}{|sin\theta|}} = \frac{\delta(u=0)}{|sin\theta|}
 
</math>
 
</math>
  
Line 99: Line 99:
  
 
<math>
 
<math>
P_{\theta}(\rho)  = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta, r sin\theta + z cos \theta) dz}
+
p_{\theta}(r)  = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta, r sin\theta + z cos \theta) dz}
 
</math>
 
</math>
  
Line 114: Line 114:
  
 
<math>
 
<math>
P_{\theta}(\rho)  = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta - 1, r sin\theta + z cos \theta - 1) dz}
+
p_{\theta}(r)  = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta - 1, r sin\theta + z cos \theta - 1) dz}
 
</math>
 
</math>
  
Line 129: Line 129:
  
 
<math>
 
<math>
P_{\theta}(\rho)  = \delta(r - (cos\theta + sin \theta)) = \delta(r - \sqrt{2} cos (\theta - \frac{\pi}{4}))
+
p_{\theta}(r)  = \delta(r - (cos\theta + sin \theta)) = \delta(r - \sqrt{2} cos (\theta - \frac{\pi}{4}))
 
</math>
 
</math>
  
Line 161: Line 161:
  
 
<math>
 
<math>
P_{\theta}(\rho)  = \int_{-\infty}^{+\infty}{rect(\sqrt{(r cos\theta - z sin\theta)^2 + (r sin\theta + z cos \theta)^2)} dz}
+
p_{\theta}(r)  = \int_{-\infty}^{+\infty}{rect(\sqrt{(r cos\theta - z sin\theta)^2 + (r sin\theta + z cos \theta)^2)} dz}
 
</math>
 
</math>
  
Line 185: Line 185:
  
 
<math>
 
<math>
P_{\theta}(\rho)  = \int_{-\infty}^{+\infty}{f(r cos\theta - z sin\theta, r sin\theta + z cos \theta) dz}
+
p_{\theta}(r)  = \int_{-\infty}^{+\infty}{f(r cos\theta - z sin\theta, r sin\theta + z cos \theta) dz}
 
</math>
 
</math>
  
Line 195: Line 195:
  
 
<font face="serif"><span style="font-size: 19px;"><math>
 
<font face="serif"><span style="font-size: 19px;"><math>
\text{ else } P_{\theta}(\rho) = 0
+
\text{ else } p_{\theta}(r) = 0
 
</math></span></font>
 
</math></span></font>
  
Line 207: Line 207:
  
 
<math>
 
<math>
P_{\theta}(\rho)  = \int_{-\infty}^{+\infty}{rect \left( \sqrt{(r cos\theta - z sin\theta - 1)^2, (r sin\theta + z cos \theta - 1)^2} \right) dz}
+
p_{\theta}(r)  = \int_{-\infty}^{+\infty}{rect \left( \sqrt{(r cos\theta - z sin\theta - 1)^2, (r sin\theta + z cos \theta - 1)^2} \right) dz}
 
</math>
 
</math>
  
Line 248: Line 248:
  
 
<math>
 
<math>
\text{ where } P_\theta(r) = \left\{\begin{matrix}
+
\text{ where } p_\theta(r) = \left\{\begin{matrix}
 
\sqrt{1 - 4r^2}, &\text{ if }|r| \leq \frac{1}{2}
 
\sqrt{1 - 4r^2}, &\text{ if }|r| \leq \frac{1}{2}
 
\\
 
\\

Revision as of 17:27, 2 August 2012

ECE Ph.D. Qualifying Exam in "Communication, Networks, Signal, and Image Processing" (CS)

Question 1, August 2011, Part 1

Part 1,2]

 $ \color{blue}\text{Consider an image } f(x,y) \text{ with a forward projection} $

                $ \color{blue} p_{\theta}(r) = \mathcal{FP}\left \{ f(x,y) \right \} $

                             $ \color{blue} = \int_{-\infty}^{\infty}{f \left ( r cos(\theta) - z sin(\theta),r sin(\theta) + z cos(\theta) \right )dz}. $

$ \color{blue} \text{Let } F(\mu,\nu) \text{ be the continuous-time Fourier transform of } f(x,y) \text{ given by} $
              $ \color{blue} F(u,v) = \int_{-\infty}^{\infty}{\int_{-\infty}^{\infty}{f(x,y)e^{-j2\pi(ux,vy)}dx}dy} $

$ \color{blue} \text{and let } p_{\theta}(r) \text{ be the continuous-time Fourier transform of } p_{\theta}(r) \text{ given by} $
              $ \color{blue} p_{\theta}(r) = \int_{-\infty}^{\infty}{p_{\theta}(r)e^{-j2\pi(\rho r)}dr}. $


$ \color{blue}\text{a) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x,y). $

$ \color{blue}\text{Solution 1:} $

$ p_{\theta}(r) = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta, r sin\theta + z cos \theta) dz} $


$ {\color{green} \text{Recall:}} $


$ {\color{green} \text{i) } \int_{-\infty}^{+\infty}{f(g(t)) \delta (t) dt} = f(g(t=0)) \int_{-\infty}^{+\infty}{\delta (t) dt} } $


$ {\color{green} \text{ii) } \int_{-\infty}^{+\infty}{\delta (\alpha t) dt} = \int_{-\infty}^{+\infty}{\delta (u) \frac{du}{|\alpha|}} = \frac{1}{|\alpha|} } $


$ {\color{green} \text{iii) } \delta() \text{ function is separable: } \delta(x,y) = \delta(x) \cdot \delta(y) } $


$ \text{ Define } u = r cos\theta - z sin\theta $


$ \Rightarrow dz = \frac{du}{|sin\theta|} $


$ \text{ Now } $


$ p_{\theta}(r) = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta, r sin\theta + z cos \theta) dz} $


$ p_{\theta}(r) = \int_{-\infty}^{+\infty}{\delta(g(u)) \delta(u) \frac{du}{|sin\theta|}} = \frac{\delta(u=0)}{|sin\theta|} $


$ = \frac{\delta(\frac{r}{sin\theta})}{|sin\theta|} = \frac{|sin\theta|}{|sin\theta|} \delta(r) = \delta(r) $


$ \color{blue}\text{Solution 2:} $

.QE 11 CS5 2 a sol2.PNG

$ p_{\theta}(r) = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta, r sin\theta + z cos \theta) dz} $

$ = \delta(r) $


$ \color{blue}\text{b) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = \delta(x-1,y-1). $

$ \color{blue}\text{Solution 1:} $

$ p_{\theta}(r) = \int_{-\infty}^{+\infty}{\delta(r cos\theta - z sin\theta - 1, r sin\theta + z cos \theta - 1) dz} $


$ \text{ Similar to the solution 1 to part a) we define u: } u = r cos\theta - z sin\theta - 1 $


$ \text{ Following the same logic as in part a) we obtain the final answer:} $


$ p_{\theta}(r) = \delta(r - (cos\theta + sin \theta)) = \delta(r - \sqrt{2} cos (\theta - \frac{\pi}{4})) $


$ \color{blue}\text{Solution 2:} $

QE 11 CS5 2 b sol2.PNG

$ \tilde{p}_\theta(r) = p_{\theta}(r - \sqrt{1+1} cos(\theta - tan^{-1}(\frac{1}{1}))) $

$ = p_\theta(r - \sqrt{2} cos(\theta - \frac{\pi}{4})) $

$ = \delta(r - \sqrt{2} cos(\theta - \frac{\pi}{4})) $



$ \color{blue}\text{c) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{x^2+y^2} \right). $


$ \color{blue}\text{Solution 1:} $


$ p_{\theta}(r) = \int_{-\infty}^{+\infty}{rect(\sqrt{(r cos\theta - z sin\theta)^2 + (r sin\theta + z cos \theta)^2)} dz} $


$ = \int_{-\sqrt{\frac{1}{4} - r^2}}^{\sqrt{\frac{1}{4} - r^2}}{1 dz} $


$ = \left\{\begin{matrix} \sqrt{1 - 4r^2}, &\text{ if }|r| \leq \frac{1}{2} \\ 0, &\text{ otherwise} \end{matrix}\right. $


$ \color{blue}\text{Solution 2:} $

QE 11 CS5 2 c sol2.PNG

$ p_{\theta}(r) = \int_{-\infty}^{+\infty}{f(r cos\theta - z sin\theta, r sin\theta + z cos \theta) dz} $


$ = \int_{-\sqrt{\frac{1}{4} - r^2}}^{\sqrt{\frac{1}{4} - r^2}}{1 dz} = \sqrt{1 - 4r^2}, \text{ if }|r| \leq \frac{1}{2} $


$ \text{ else } p_{\theta}(r) = 0 $


$ \color{blue}\text{d) Calculate the forward projection }p_{\theta}(r) \text{, for } f(x,y) = rect \left(\sqrt[]{(x-1)^2+(y-1)^2} \right). $

$ \color{blue}\text{Solution 1:} $


$ p_{\theta}(r) = \int_{-\infty}^{+\infty}{rect \left( \sqrt{(r cos\theta - z sin\theta - 1)^2, (r sin\theta + z cos \theta - 1)^2} \right) dz} $


$ = \int_{-\sqrt{\frac{1}{4} - (r - (cos\theta + sin\theta))^2}}^{\sqrt{\frac{1}{4} - (r - (cos\theta + sin\theta))^2}}{1 dz} $


$ = \left\{\begin{matrix} \sqrt{1 - 4(r - (cos\theta + sin\theta))^2}, &\text{ if }|r| \leq \frac{1}{2} \\ 0, &\text{ otherwise} \end{matrix}\right. $


$ = \left\{\begin{matrix} \sqrt{1 - 4(r - \sqrt{2} cos (\theta - \frac{\pi}{4}))^2}, &\text{ if }|r| \leq \frac{1}{2} \\ 0, &\text{ otherwise} \end{matrix}\right. $


$ \color{blue}\text{Solution 2:} $

$ \tilde{p}_\theta(r) = p_{\theta}(r - \sqrt{1+1} cos(\theta - tan^{-1}(\frac{1}{1}))) $


$ = p_\theta(r - \sqrt{2} cos(\theta - \frac{\pi}{4})) $


$ \text{ where } p_\theta(r) = \left\{\begin{matrix} \sqrt{1 - 4r^2}, &\text{ if }|r| \leq \frac{1}{2} \\ 0, &\text{ else} \end{matrix}\right. $


$ \color{blue}\text{e) Describe in precise detail, the steps required to perform filtered back projection (FBP) reconstruction of } f(x,y). $


$ \color{blue}\text{Solution 1:} $

$ 1. \text{ Compute } \rho_{\theta}(r) $


$ 2. \text{ Compute FT of step 1.} $

$ 3. \text{ Multiply step 2 by the filter } H(\rho) = |\rho| = f_c \left [ rect(\frac{f}{2f_c}) - \Lambda(\frac{f}{f_c}) \right ], \text{ for some cut-off, } f_c $

$ 4. \text{ Compute inverseFT of step 3; (call it) } g_\theta(r) $


$ 5. \text{ Back project } g_{\theta}(r) \text{ and get: } $

$ f(x,y) = \int_{0}^{\pi}{g_\theta(xcos\theta + ysin\theta)d\theta} $


$ \color{blue}\text{Solution 2:} $

$ 1. \text{ Measure the projections } \rho_{\theta}(r) \text{ at various angles} $

$ 2. \text{ Filter the projections } \rho_{\theta}(r) \text{ with } h(r) \text{, where } H(\rho) = |\rho| \text{ and get } g_{\theta}(r) $

$ 3. \text{ Back project } g_{\theta}(r) \text{ along } r = xcos\theta + ysin\theta \text{ and get } $

$ f(x,y) = \int_{0}^{\pi}{g_\theta(xcos\theta + ysin\theta)d\theta} $


"Communication, Networks, Signal, and Image Processing" (CS)- Question 5, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett