Line 11: Line 11:
  
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
<font face="serif"><span style="font-size: 19px;"><math>
+
<math>
{\color{green} \text{Recall:}
+
{\color{green} \text{Recall:}}
</math></span></font>
+
</math>
  
<font face="serif"><span style="font-size: 19px;"><math>
+
<math>
{\color{green} \text{A random process is wide stationary if}
+
{\color{green} \text{A random process is wide sense stationary (WSS) if}}
</math></span></font>
+
</math>
  
<font face="serif"><span style="font-size: 19px;"><math>
+
<math>
{\color{green} i) It's mean is constant.}
+
{\color{green} \text{i) It's mean is constant.}]
</math></span></font>
+
</math>
  
 
<font face="serif"><span style="font-size: 19px;"><math>
 
<font face="serif"><span style="font-size: 19px;"><math>
{\color{green} ii) It's mean is constant.}
+
{\color{green} \text{ii) It's mean is constant.}}
 
</math></span></font>
 
</math></span></font>
  

Revision as of 12:28, 1 August 2012

ECE Ph.D. Qualifying Exam in "Communication, Networks, Signal, and Image Processing" (CS)

Question 1, August 2011, Part 2

Part 1,2]

 $ \color{blue}\text{Show that if a continuous-time Gaussian random process } \mathbf{X}(t) \text{ is wide-sense stationary, it is also strict-sense stationary.} $

$ \color{blue}\text{Solution 1:} $

$ {\color{green} \text{Recall:}} $

$ {\color{green} \text{A random process is wide sense stationary (WSS) if}} $

$ {\color{green} \text{i) It's mean is constant.}] $

$ {\color{green} \text{ii) It's mean is constant.}} $


$ \mathbf{X}(t) \text{ is SSS if } F_{(t_1+\tau)...(t_n+\tau)}(x_1,...,x_n) \text{ does not depend on } \tau. \text{ To show that, we can show that } \Phi_{(t_1+\tau)...(t_n+\tau)}(\omega_1,...,\omega_n) \text{ does not depend on } \tau: $

$ \Phi_{(t_1+\tau)...(t_n+\tau)}(\omega_1,...,\omega_n) = E \left [e^{i\sum_{j=1}^{n}{\omega_jX(t_j+\tau)}} \right ] $


$ \text{Define } Y(t_j+\tau) = \sum_{j=1}^{n}{\omega_jX(t_j+\tau)} \text{, so} $


$ \Phi_{(t_1+\tau)...(t_n+\tau)}(\omega_1,...,\omega_n) = E \left [e^{Y(t_j+\tau)} \right ] = \Phi_{(t_1+\tau)...(t_n+\tau)}(1) $


$ \text{Since } Y(t) \text{ is Gaussian, it is characterized just by its mean and variance. So, we just need to show that mean and variance of } Y(t) \text{ do not depend on } \tau. \text{ Since } Y(t) \text{ is WSS, its mean is constant and does not depend on . For variance} $


$ var(Y(t_j+\tau)) = E \left [(\sum_{j=1}^{n}{w_j(X(t_j+\tau)-\mu)^2} \right ] $


$ =\sum_{j=1}^{n}{\omega_j^2E \left [ (X(t_j+\tau)-\mu)^2 \right ]} + \sum_{i,j=1}^{n}{\omega_i \omega_j E \left[ (X(t_i+\tau)-\mu)(X(t_j+\tau)-\mu) \right]} $


$ =\sum_{i,j=1}^{n}{\omega_j^2 cov(t_j,t_j)} + \sum_{i,j=1}^{n}{\omega_i \omega_j cov(t_j,t_j)} $


$ \text{Which does not depend on } \tau. $


$ \color{blue}\text{Solution 2:} $

$ \text{Suppose } \mathbf{X}(t) \text{ is a Gaussian Random Process} $


$ \Rightarrow f(x(t_1),x(t_2),...,x(t_k)) = \frac{1}{2\pi^{(\frac{k}{2})} |\Sigma |^{\frac{1}{2}}} exp(-\frac{1}{2}(\overrightarrow{x} - \overrightarrow{m})^T \Sigma ^{-1}(\overrightarrow{x} - \overrightarrow{m})) $


$ \text{for any number of time instances.} $


$ \text{If } \mathbf{X}(t) \text{is WSS} $


$ \Rightarrow \text{ (1) } m_X(t_1) = m_X(t_2) = ... = m_X(t_K) = m $


$ \text{ (2) } R_X(t_i,t_i) = R_X(t_i + \tau, t_j + \tau) $


$ \Sigma = \begin{bmatrix} &R_X(t_1,t_1) &... &R_X(t_1,t_k)\\ &\vdots & \\ &R_X(t_k,t_1) &... &R_X(t_k,t_k)\\ \end{bmatrix} $


$ \text{From (1): } \overrightarrow{m}' = (m_X(t_1+\tau) , m_X(t_2+\tau) , ... , m_X(t_K+\tau)) = \overrightarrow{m} $


$ \text{From (2): } \Sigma' = \begin{bmatrix} &R_X(t_1,t_1) &... &R_X(t_1,t_k)\\ &\vdots & \\ &R_X(t_k,t_1) &... &R_X(t_k,t_k)\\ \end{bmatrix} = \Sigma $


$ \text{So } f(x(t_1+\tau),x(t_2+\tau),...,x(t_k+\tau)) \text{ is not related to } \tau. $


$ f(x(t_1+\tau),x(t_2+\tau),...,x(t_k+\tau)) $


$ = f(x(t_1),x(t_2),...,x(t_k)) $


$ {\color{red} \text{It is not clear how the student implies that the pdf is not related to } \tau!} $


$ \Rightarrow \mathbf{X}(t) \text{ is Strict Sense Stationary. } $


"Communication, Networks, Signal, and Image Processing" (CS)- Question 1, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett