Line 7: | Line 7: | ||
---- | ---- | ||
− | <font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{ | + | <font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{Consider the following discrete space system with input } x(m,n) \text{ and output } y(m,n). |
+ | </math></span></font> | ||
− | + | <math>\color{blue} | |
+ | y(m,n) = \sum_{k=-\infty}^{\infty}{\sum_{l=-\infty}^{\infty}{x(m-k,n-l)h(k,l)}}. | ||
+ | </math><br> | ||
− | |||
− | <math> | + | <math>\color{blue} |
+ | \text{For parts a) and b) let} | ||
+ | </math><br> | ||
+ | <math>\color{blue} | ||
+ | h(m,n)=sinc(mT,nT) | ||
+ | </math><br> | ||
+ | <math>\color{blue} | ||
+ | \text{where } T\leq1. | ||
+ | </math><br> | ||
− | |||
− | |||
− | <math>\ | + | <math>\color{blue} |
+ | \text{For parts c), d), and e) let} | ||
+ | </math><br> | ||
+ | <math>\color{blue} | ||
+ | h(m,n)=sinc\left( \frac{(n+m)T}{\sqrt[]{2}},\frac{(n-m)T}{\sqrt[]{2}} \right) | ||
+ | </math><br> | ||
+ | <math>\color{blue} | ||
+ | \text{where } T\leq1. | ||
+ | </math><br> | ||
− | <math> | + | |
− | \ | + | |
− | \ | + | <math>\color{blue}\text{a) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right).</math><br> |
− | </math> | + | |
+ | ===== <math>\color{blue}\text{Solution 1:}</math> ===== | ||
<math> | <math> | ||
− | + | ||
− | + | ||
</math> | </math> | ||
Line 37: | Line 54: | ||
---- | ---- | ||
− | <math>\color{blue} | + | <math>\color{blue}\text{b) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |nu| < 2\pi \text{ when } T = \frac{1}{2} |
− | + | ||
</math><br> | </math><br> | ||
Line 44: | Line 60: | ||
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math> | <font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math> | ||
− | + | ||
+ | |||
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;"> | </math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;"> | ||
</span></font> | </span></font> | ||
− | |||
− | |||
− | |||
---- | ---- | ||
Line 57: | Line 71: | ||
sol2 here | sol2 here | ||
+ | |||
---- | ---- | ||
− | <math>\color{blue} | + | <math>\color{blue}\text{c) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right).</math><br> |
− | + | ||
− | </math><br> | + | |
<math>\color{blue}\text{Solution 1:}</math> | <math>\color{blue}\text{Solution 1:}</math> | ||
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math> | <font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math> | ||
− | + | ||
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;"> | </math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;"> | ||
</span></font> | </span></font> | ||
'''<font face="serif"><math> | '''<font face="serif"><math> | ||
− | + | ||
</math> </font>''' | </math> </font>''' | ||
Line 81: | Line 94: | ||
---- | ---- | ||
− | <math>\color{blue} | + | <math>\color{blue}\text{d) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |nu| < 2\pi \text{ when } T = \frac{1}{2} |
− | + | ||
</math><br> | </math><br> | ||
Line 88: | Line 100: | ||
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math> | <font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math> | ||
− | + | ||
+ | </math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;"> | ||
</span></font> | </span></font> | ||
− | |||
− | |||
− | |||
− | |||
---- | ---- | ||
Line 101: | Line 110: | ||
sol2 here | sol2 here | ||
---- | ---- | ||
− | <math>\color{blue} | + | <math>\color{blue}\text{e) Calculate } y(m,n) \text{ when } x(m,n)=1.</math><br> |
− | + | ||
− | </math><br> | + | |
<math>\color{blue}\text{Solution 1:}</math> | <math>\color{blue}\text{Solution 1:}</math> | ||
<font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math> | <font color="#ff0000"><span style="font-size: 17px;">'''<font face="serif"></font><math> | ||
− | + | ||
</math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;"> | </math>'''</span></font><font color="#ff0000"><span style="font-size: 17px;"> | ||
</span></font> | </span></font> | ||
− | |||
− | |||
− | |||
− | |||
---- | ---- |
Revision as of 18:03, 30 July 2012
ECE Ph.D. Qualifying Exam in "Communication, Networks, Signal, and Image Processing" (CS)
Question 5, August 2011, Part 1
- Part 1,2]
$ \color{blue}\text{Consider the following discrete space system with input } x(m,n) \text{ and output } y(m,n). $
$ \color{blue} y(m,n) = \sum_{k=-\infty}^{\infty}{\sum_{l=-\infty}^{\infty}{x(m-k,n-l)h(k,l)}}. $
$ \color{blue} \text{For parts a) and b) let} $
$ \color{blue} h(m,n)=sinc(mT,nT) $
$ \color{blue} \text{where } T\leq1. $
$ \color{blue} \text{For parts c), d), and e) let} $
$ \color{blue} h(m,n)=sinc\left( \frac{(n+m)T}{\sqrt[]{2}},\frac{(n-m)T}{\sqrt[]{2}} \right) $
$ \color{blue} \text{where } T\leq1. $
$ \color{blue}\text{a) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right). $
$ \color{blue}\text{Solution 1:} $
$ \color{blue}\text{Solution 2:} $
here put sol.2
$ \color{blue}\text{b) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |nu| < 2\pi \text{ when } T = \frac{1}{2} $
$ \color{blue}\text{Solution 1:} $
$ \color{blue}\text{Solution 2:} $
sol2 here
$ \color{blue}\text{c) Calculate the frequency response, }H \left( e^{j\mu},e^{j\nu} \right). $
$ \color{blue}\text{Solution 1:} $
$ \color{blue}\text{Solution 2:} $
sol2 here
$ \color{blue}\text{d) Sketch the frequency response for } |\mu| < 2\pi \text{ and } |nu| < 2\pi \text{ when } T = \frac{1}{2} $
$ \color{blue}\text{Solution 1:} $
$ \color{blue}\text{Solution 2:} $
sol2 here
$ \color{blue}\text{e) Calculate } y(m,n) \text{ when } x(m,n)=1. $
$ \color{blue}\text{Solution 1:} $
$ \color{blue}\text{Solution 2:} $
sol2 here
"Communication, Networks, Signal, and Image Processing" (CS)- Question 5, August 2011
Go to
- Part 1: solutions and discussions
- Part 2: solutions and discussions