Line 49: Line 49:
 
\end{matrix}\right.</math>  
 
\end{matrix}\right.</math>  
  
<math>\color{green} \text{This solution is not using the Fundamental Theorem of Linear Programming}</math>  
+
<math>\color{green} \text{This solution is NOT using the Fundamental Theorem of Linear Programming}</math>  
  
 
----
 
----
Line 84: Line 84:
 
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x^{\left( 1 \right)}= \begin{bmatrix}
 
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x^{\left( 1 \right)}= \begin{bmatrix}
 
-3 & 4 & 0
 
-3 & 4 & 0
\end{bmatrix}^{T} \text{ is BFS. } f_{1}=-9</math>  
+
\end{bmatrix}^{T} \text{ is a BFS. } f_{1}=-9</math>  
  
 
<math>\text{The second basis candidate is } \begin{pmatrix}
 
<math>\text{The second basis candidate is } \begin{pmatrix}
Line 101: Line 101:
 
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x^{\left( 2 \right)}= \begin{bmatrix}
 
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x^{\left( 2 \right)}= \begin{bmatrix}
 
0 & 1 & -3
 
0 & 1 & -3
\end{bmatrix}^{T} \text{ is BFS. } f_{2}=-15</math>  
+
\end{bmatrix}^{T} \text{ is a BFS. } f_{2}=-15</math>  
  
 
<math>\text{The third basis candidate is } \begin{pmatrix}
 
<math>\text{The third basis candidate is } \begin{pmatrix}
Line 118: Line 118:
 
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x^{\left( 2 \right)}= \begin{bmatrix}
 
&nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x^{\left( 2 \right)}= \begin{bmatrix}
 
1 & 0 & -5
 
1 & 0 & -5
\end{bmatrix}^{T} \text{ is BFS. } f_{3}=-21</math>  
+
\end{bmatrix}^{T} \text{ is a BFS. } f_{3}=-21</math>  
  
 
<math>\because f_{1}>f_{2}>f_{3} \text{ , where } f_{1}=-9 \text{ is maximal.}</math>  
 
<math>\because f_{1}>f_{2}>f_{3} \text{ , where } f_{1}=-9 \text{ is maximal.}</math>  
Line 128: Line 128:
 
<math>\color{green} \text{This solution use the Fundamental Theorem of Linear Programming. }</math>  
 
<math>\color{green} \text{This solution use the Fundamental Theorem of Linear Programming. }</math>  
  
<math>\color{green} \text{We generate all possible basic feasible solutions and select from them the optimal one.}</math>
+
<math>\color{green} \text{We generate all possible basic feasible solutions and select from them the optimal one.}</math>  
  
 
----
 
----
Line 165: Line 165:
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{The corresponding basic solution is } x^{\left( 1 \right)}= \begin{bmatrix}
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{The corresponding basic solution is } x^{\left( 1 \right)}= \begin{bmatrix}
 
4 & 2 & 0
 
4 & 2 & 0
\end{bmatrix}^{T} \text{ is BFS.}</math><br>  
+
\end{bmatrix}^{T} \text{ is a BFS.}</math><br>  
  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<span class="texhtml">The objective function value is ''f''<sub>1</sub> = 14</span>  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<span class="texhtml">The objective function value is ''f''<sub>1</sub> = 14</span>  

Revision as of 20:46, 28 June 2012

ECE Ph.D. Qualifying Exam in "Automatic Control" (AC)

Question 3, Part 3, August 2011

Part 1,2,3,4,5

 $ \color{blue}\text{3. } \left( \text{20 pts} \right) \text{ Solve the following linear program, } $

maximize    − x1 − 3x2 + 4x3

subject to    x1 + 2x2x3 = 5

                   2x1 + 3x2x3 = 6

                   $ x_{1} \text{ free, } x_{2}\geq0, x_{3}\leq0. $


Theory

The Fundamental Theorem of Linear Programming that one of the basic feasible solutions is an optimal solution. 


$ \color{blue}\text{Solution 1:} $

$ \left.\begin{matrix} x_{1}+2x_{2}-x_{3}=5 \\ 2x_{1}+3x_{2}-x_{3}=6 \end{matrix}\right\}\Rightarrow x_{1}=5-2x_{2}+x_{3}=3-\frac{3}{2}x_{2}+\frac{1}{2}x_{3} $

$ \Rightarrow x_{2}-x_{3}=4 $

$ \text{It is equivalent to min } x_{1}+3x_{2}-4x_{3} =5-2x_{2}+x_{3}+3x_{2}-4x_{3} = x_{2}-3x_{3}+5, x_{2}\geq0, x_{3}\leq0 $

$ x_{2}-3x_{3}+5 = x_{2}-x_{3}-2x_{3}+5=9-2x_{3}\geq9 $   $ \color{green} \text{constrain: } x_{3}\leq0 \Rightarrow x_{3}=0 $

$ \text{Equivalently, } -x_{1}-3x_{2}+4x_{3}\leq-9 $

$ \text{Equality is satisfied when } x_{3}=0, x_{2} =4+0=4, x_{1}=5-2\times4=-3 $

$ \Rightarrow \left\{\begin{matrix} x_{1}=-3\\ x_{2}=4\\ x_{3}=0 \end{matrix}\right. $

$ \color{green} \text{This solution is NOT using the Fundamental Theorem of Linear Programming} $


$ \color{blue}\text{Solution 2:} $

One of the basic feasible solution is an optimal solution.
The equality constraints can be represented in the form Ax = b,

$ A=\begin{bmatrix} 1 & 2 & -1\\ 2 & 3 & -1 \end{bmatrix}=\begin{bmatrix} a_{1}& a_{2}& a_{3} \end{bmatrix}; b=\begin{bmatrix} 5\\ 6 \end{bmatrix} $

$ \text{The first basis candidate is } \begin{pmatrix} a_{1} & a_{2} \end{pmatrix} $

        $ \left [ A|b \right ] =\begin{bmatrix} 1 & 2 & -1 & 5 \\ 2 & 3 & -1 & 6 \end{bmatrix} = \cdots = \begin{bmatrix} 1 & 0 & 1 & -3 \\ 0 & 1 & -1 & 4 \end{bmatrix} $

        $ x^{\left( 1 \right)}= \begin{bmatrix} -3 & 4 & 0 \end{bmatrix}^{T} \text{ is a BFS. } f_{1}=-9 $

$ \text{The second basis candidate is } \begin{pmatrix} a_{2} & a_{3} \end{pmatrix} $

        $ \left [ A|b \right ] =\begin{bmatrix} 1 & 2 & -1 & 5 \\ 2 & 3 & -1 & 6 \end{bmatrix} = \cdots = \begin{bmatrix} 1 & 0 & 1 & -3 \\ 1 & 1 & 0 & 1 \end{bmatrix} $

        $ x^{\left( 2 \right)}= \begin{bmatrix} 0 & 1 & -3 \end{bmatrix}^{T} \text{ is a BFS. } f_{2}=-15 $

$ \text{The third basis candidate is } \begin{pmatrix} a_{1} & a_{3} \end{pmatrix} $

        $ \left [ A|b \right ] =\begin{bmatrix} 1 & 2 & -1 & 5 \\ 2 & 3 & -1 & 6 \end{bmatrix} = \cdots = \begin{bmatrix} 0 & 1 & 1 & 4 \\ 1 & 1 & 0 & 1 \end{bmatrix} $

        $ x^{\left( 2 \right)}= \begin{bmatrix} 1 & 0 & -5 \end{bmatrix}^{T} \text{ is a BFS. } f_{3}=-21 $

$ \because f_{1}>f_{2}>f_{3} \text{ , where } f_{1}=-9 \text{ is maximal.} $

$ \therefore \text{The optimal solution is } x^{*}=\begin{bmatrix} -3 & 4 & 0 \end{bmatrix} \text{ with objective value } -9 $

$ \color{green} \text{This solution use the Fundamental Theorem of Linear Programming. } $

$ \color{green} \text{We generate all possible basic feasible solutions and select from them the optimal one.} $


$ \color{blue} \text{Related Problem: Solve following linear programming problem,} $

minimize   3x1 + x2 + x3

subject to  x1 + x3 = 4

                  x2x3 = 2

                  $ x_{1}\geq0,x_{2}\geq0,x_{3}\geq0, $

$ \color{blue}\text{Solution} $

The equality constraints can be represented in the form Ax = b,

$ A= \begin{bmatrix} 1 & 0 & 1\\ 0 & 1 & -1 \end{bmatrix}=\begin{bmatrix} a_{1}& a_{2}& a_{3} \end{bmatrix}; b=\begin{bmatrix} 4\\ 2 \end{bmatrix} $

$ \text{The first basis candidate is } \begin{pmatrix} a_{1} & a_{2} \end{pmatrix} $

         $ \text{The corresponding basic solution is } x^{\left( 1 \right)}= \begin{bmatrix} 4 & 2 & 0 \end{bmatrix}^{T} \text{ is a BFS.} $

         The objective function value is f1 = 14

$ \text{The second basis candidate is } \begin{pmatrix} a_{1} & a_{3} \end{pmatrix} $

         $ \text{The corresponding basic solution is } x^{\left( 2 \right)}= \begin{bmatrix} 6 & 0 & -2 \end{bmatrix}^{T} \text{, which is NOT a BFS.} $       

$ \text{The third basis candidate is } \begin{pmatrix} a_{2} & a_{3} \end{pmatrix} $

         $ \text{The corresponding basic solution is } x^{\left( 3 \right)}= \begin{bmatrix} 0 & 6 & 4 \end{bmatrix}^{T} \text{, which is a BFS.} $

         The objective function value is f3 = 10

$ \therefore \text{ the optimal solution is } x^{ * }= \begin{bmatrix} 0 & 6 & 4 \end{bmatrix}^{T} $



Automatic Control (AC)- Question 3, August 2011

Go to



Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang