Line 35: Line 35:
 
=5-2x_{2}+x_{3}+3x_{2}-4x_{3} = x_{2}-3x_{3}+5, x_{2}\geq0, x_{3}\leq0</math>  
 
=5-2x_{2}+x_{3}+3x_{2}-4x_{3} = x_{2}-3x_{3}+5, x_{2}\geq0, x_{3}\leq0</math>  
  
<math>x_{2}-3x_{3}+5 = x_{2}-x_{3}-2x_{3}+5=9-2x_{3}\geq9</math>  
+
<math>x_{2}-3x_{3}+5 = x_{2}-x_{3}-2x_{3}+5=9-2x_{3}\geq9</math>&nbsp; &nbsp;<math>\color{green}  \text{constrain:  } x_{3}\leq0 \Rightarrow x_{3}=0</math>
  
 
<math>\text{Equivalently, } -x_{1}-3x_{2}+4x_{3}\leq-9</math>  
 
<math>\text{Equivalently, } -x_{1}-3x_{2}+4x_{3}\leq-9</math>  
Line 47: Line 47:
 
\end{matrix}\right.</math>  
 
\end{matrix}\right.</math>  
  
<math>\color{green} \text{This solution is not using the Fundamental Theorem of Linear Programming}</math>  
+
<math>\color{green} \text{This solution is not using the Fundamental Theorem of Linear Programming}</math>
  
 
----
 
----
Line 118: Line 118:
 
----
 
----
  
<math>\color{blue} \text{Related Problem: Solve following linear programming problem,}</math>
+
<math>\color{blue} \text{Related Problem: Solve following linear programming problem,}</math>  
  
minimize &nbsp;&nbsp;<math>3x_{1}+x_{2}+x_{3}</math>
+
minimize &nbsp;&nbsp;<span class="texhtml">3''x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>3</sub></span>  
  
subject to &nbsp;<math>x_{1}+x_{3}=4</math>
+
subject to &nbsp;<span class="texhtml">''x''<sub>1</sub> + ''x''<sub>3</sub> = 4</span>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{2}-x_{3}=2</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<span class="texhtml">''x''<sub>2</sub> − ''x''<sub>3</sub> = 2</span>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1}\geq0,x_{2}\geq0,x_{3}\geq0,</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1}\geq0,x_{2}\geq0,x_{3}\geq0,</math>  
  
<math>\color{blue}\text{Solution}</math>
+
<math>\color{blue}\text{Solution}</math>  
  
 
<math>\text{The equality constraints can be represented in the form } Ax=b, A= \begin{bmatrix}
 
<math>\text{The equality constraints can be represented in the form } Ax=b, A= \begin{bmatrix}
Line 137: Line 137:
 
a_{2}&  
 
a_{2}&  
 
a_{3}
 
a_{3}
\end{bmatrix}</math><br>
+
\end{bmatrix}</math><br>  
 
+
For basis candidate&nbsp;
+
 
+
 
+
  
 +
For basis candidate&nbsp;
  
 +
<br>
  
 +
<br>
  
 +
<br>
  
 
----
 
----

Revision as of 20:09, 28 June 2012

ECE Ph.D. Qualifying Exam in "Automatic Control" (AC)

Question 3, Part 3, August 2011

Part 1,2,3,4,5

 $ \color{blue}\text{3. } \left( \text{20 pts} \right) \text{ Solve the following linear program, } $

maximize    − x1 − 3x2 + 4x3

subject to    x1 + 2x2x3 = 5

                   2x1 + 3x2x3 = 6

                   $ x_{1} \text{ free, } x_{2}\geq0, x_{3}\leq0. $


The Fundamental Theorem of Linear Programming that one of the basic feasible solutions is an optimal solution. So we generate all possible basic feasible solutions and select from them the optimal one.


$ \color{blue}\text{Solution 1:} $

$ \left.\begin{matrix} x_{1}+2x_{2}-x_{3}=5 \\ 2x_{1}+3x_{2}-x_{3}=6 \end{matrix}\right\}\Rightarrow x_{1}=5-2x_{2}+x_{3}=3-\frac{3}{2}x_{2}+\frac{1}{2}x_{3} $

$ \Rightarrow x_{2}-x_{3}=4 $

$ \text{It is equivalent to min } x_{1}+3x_{2}-4x_{3} =5-2x_{2}+x_{3}+3x_{2}-4x_{3} = x_{2}-3x_{3}+5, x_{2}\geq0, x_{3}\leq0 $

$ x_{2}-3x_{3}+5 = x_{2}-x_{3}-2x_{3}+5=9-2x_{3}\geq9 $   $ \color{green} \text{constrain: } x_{3}\leq0 \Rightarrow x_{3}=0 $

$ \text{Equivalently, } -x_{1}-3x_{2}+4x_{3}\leq-9 $

$ \text{Equality is satisfied when } x_{3}=0, x_{2} =4+0=4, x_{1}=5-2\times4=-3 $

$ \Rightarrow \left\{\begin{matrix} x_{1}=-3\\ x_{2}=4\\ x_{3}=0 \end{matrix}\right. $

$ \color{green} \text{This solution is not using the Fundamental Theorem of Linear Programming} $


$ \color{blue}\text{Solution 2:} $

One of the basic feasible solution is an optimal solution.
$ \text{The equality constraints can be represented in the form } Ax=b, A= \begin{bmatrix} a_{1}& a_{2}& a_{3} \end{bmatrix} $

$ \text{The fist basis candidate is } \begin{pmatrix} a_{1} & a_{2} \end{pmatrix} $

$ \left [ A|b \right ] =\begin{bmatrix} 1 & 2 & -1 & 5 \\ 2 & 3 & -1 & 6 \end{bmatrix} = \cdots = \begin{bmatrix} 1 & 0 & 1 & -3 \\ 0 & 1 & -1 & 4 \end{bmatrix} $

$ x^{\left( 1 \right)}= \begin{bmatrix} -3 & 4 & 0 \end{bmatrix} \text{ is BFS. } f_{1}=-9 $

$ \text{The second basis candidate is } \begin{pmatrix} a_{2} & a_{3} \end{pmatrix} $

$ \left [ A|b \right ] =\begin{bmatrix} 1 & 2 & -1 & 5 \\ 2 & 3 & -1 & 6 \end{bmatrix} = \cdots = \begin{bmatrix} 1 & 0 & 1 & -3 \\ 1 & 1 & 0 & 1 \end{bmatrix} $

$ x^{\left( 2 \right)}= \begin{bmatrix} 0 & 1 & -3 \end{bmatrix} \text{ is BFS. } f_{2}=-15 $

$ \text{The third basis candidate is } \begin{pmatrix} a_{1} & a_{3} \end{pmatrix} $

$ \left [ A|b \right ] =\begin{bmatrix} 1 & 2 & -1 & 5 \\ 2 & 3 & -1 & 6 \end{bmatrix} = \cdots = \begin{bmatrix} 0 & 1 & 1 & 4 \\ 1 & 1 & 0 & 1 \end{bmatrix} $

$ x^{\left( 2 \right)}= \begin{bmatrix} 1 & 0 & -5 \end{bmatrix} \text{ is BFS. } f_{3}=-21 $

$ \because f_{1}>f_{2}>f_{3} $

$ \therefore \text{The optimal solution is } x^{*}=\begin{bmatrix} -3 & 4 & 0 \end{bmatrix} \text{ with objective value } -9 $


$ \color{blue} \text{Related Problem: Solve following linear programming problem,} $

minimize   3x1 + x2 + x3

subject to  x1 + x3 = 4

                  x2x3 = 2

                  $ x_{1}\geq0,x_{2}\geq0,x_{3}\geq0, $

$ \color{blue}\text{Solution} $

$ \text{The equality constraints can be represented in the form } Ax=b, A= \begin{bmatrix} 1 & 0 & 1\\ 0 & 1 & -1 \end{bmatrix}=\begin{bmatrix} a_{1}& a_{2}& a_{3} \end{bmatrix} $

For basis candidate 





Automatic Control (AC)- Question 3, August 2011

Go to



Back to ECE Qualifying Exams (QE) page

Alumni Liaison

EISL lab graduate

Mu Qiao