Line 1: | Line 1: | ||
− | = [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Automatic Control" (AC) = | + | = [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Automatic Control" (AC) = |
= Question 3, Part 3, August 2011 = | = Question 3, Part 3, August 2011 = | ||
Line 19: | Line 19: | ||
---- | ---- | ||
− | The '''Fundamental Theorem of Linear Programming''' that one of the basic feasible solutions is an optimal solution. So we generate all possible basic feasible solutions and select from them the optimal one. | + | The '''Fundamental Theorem of Linear Programming''' that one of the basic feasible solutions is an optimal solution. So we generate all possible basic feasible solutions and select from them the optimal one. |
---- | ---- | ||
Line 39: | Line 39: | ||
<math>\text{Equivalently, } -x_{1}-3x_{2}+4x_{3}\leq-9</math> | <math>\text{Equivalently, } -x_{1}-3x_{2}+4x_{3}\leq-9</math> | ||
− | <math>\text{Equality is satisfied when } x_{3}=0, x_{2} =4, x_{1}=5-2\times4=-3</math> | + | <math>\text{Equality is satisfied when } x_{3}=0, x_{2} =4+0=4, x_{1}=5-2\times4=-3</math> |
<math>\Rightarrow \left\{\begin{matrix} | <math>\Rightarrow \left\{\begin{matrix} | ||
Line 47: | Line 47: | ||
\end{matrix}\right.</math> | \end{matrix}\right.</math> | ||
− | <math>\color{green} \text{This solution is not using the Fundamental Theorem of Linear Programming}</math> | + | <math>\color{green} \text{This solution is not using the Fundamental Theorem of Linear Programming}</math> |
---- | ---- | ||
Line 115: | Line 115: | ||
-3 & 4 & 0 | -3 & 4 & 0 | ||
\end{bmatrix} \text{ with objective value } -9</math> | \end{bmatrix} \text{ with objective value } -9</math> | ||
+ | |||
+ | ---- | ||
+ | |||
+ | <math>\color{blue} \text{Related Problem: Solve following linear programming problem,}</math> | ||
+ | |||
+ | minimize <math>3x_{1}+x_{2}+x_{3}</math> | ||
+ | |||
+ | subject to <math>x_{1}+x_{3}=4</math> | ||
+ | |||
+ | <math>x_{2}-x_{3}=2</math> | ||
+ | |||
+ | <math>x_{1}\geq0,x_{2}\geq0,x_{3}\geq0,</math> | ||
+ | |||
+ | <math>\color{blue}\text{Solution}</math> | ||
+ | |||
+ | <math>\text{The equality constraints can be represented in the form } Ax=b, A= \begin{bmatrix} | ||
+ | 1 & 0 & 1\\ | ||
+ | 0 & 1 & -1 | ||
+ | \end{bmatrix}=\begin{bmatrix} | ||
+ | a_{1}& | ||
+ | a_{2}& | ||
+ | a_{3} | ||
+ | \end{bmatrix}</math><br> | ||
+ | |||
+ | For basis candidate | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
---- | ---- |
Revision as of 20:02, 28 June 2012
ECE Ph.D. Qualifying Exam in "Automatic Control" (AC)
Question 3, Part 3, August 2011
$ \color{blue}\text{3. } \left( \text{20 pts} \right) \text{ Solve the following linear program, } $
maximize − x1 − 3x2 + 4x3
subject to x1 + 2x2 − x3 = 5
2x1 + 3x2 − x3 = 6
$ x_{1} \text{ free, } x_{2}\geq0, x_{3}\leq0. $
The Fundamental Theorem of Linear Programming that one of the basic feasible solutions is an optimal solution. So we generate all possible basic feasible solutions and select from them the optimal one.
$ \color{blue}\text{Solution 1:} $
$ \left.\begin{matrix} x_{1}+2x_{2}-x_{3}=5 \\ 2x_{1}+3x_{2}-x_{3}=6 \end{matrix}\right\}\Rightarrow x_{1}=5-2x_{2}+x_{3}=3-\frac{3}{2}x_{2}+\frac{1}{2}x_{3} $
$ \Rightarrow x_{2}-x_{3}=4 $
$ \text{It is equivalent to min } x_{1}+3x_{2}-4x_{3} =5-2x_{2}+x_{3}+3x_{2}-4x_{3} = x_{2}-3x_{3}+5, x_{2}\geq0, x_{3}\leq0 $
$ x_{2}-3x_{3}+5 = x_{2}-x_{3}-2x_{3}+5=9-2x_{3}\geq9 $
$ \text{Equivalently, } -x_{1}-3x_{2}+4x_{3}\leq-9 $
$ \text{Equality is satisfied when } x_{3}=0, x_{2} =4+0=4, x_{1}=5-2\times4=-3 $
$ \Rightarrow \left\{\begin{matrix} x_{1}=-3\\ x_{2}=4\\ x_{3}=0 \end{matrix}\right. $
$ \color{green} \text{This solution is not using the Fundamental Theorem of Linear Programming} $
$ \color{blue}\text{Solution 2:} $
One of the basic feasible solution is an optimal solution.
$ \text{The equality constraints can be represented in the form } Ax=b, A= \begin{bmatrix} a_{1}& a_{2}& a_{3} \end{bmatrix} $
$ \text{The fist basis candidate is } \begin{pmatrix} a_{1} & a_{2} \end{pmatrix} $
$ \left [ A|b \right ] =\begin{bmatrix} 1 & 2 & -1 & 5 \\ 2 & 3 & -1 & 6 \end{bmatrix} = \cdots = \begin{bmatrix} 1 & 0 & 1 & -3 \\ 0 & 1 & -1 & 4 \end{bmatrix} $
$ x^{\left( 1 \right)}= \begin{bmatrix} -3 & 4 & 0 \end{bmatrix} \text{ is BFS. } f_{1}=-9 $
$ \text{The second basis candidate is } \begin{pmatrix} a_{2} & a_{3} \end{pmatrix} $
$ \left [ A|b \right ] =\begin{bmatrix} 1 & 2 & -1 & 5 \\ 2 & 3 & -1 & 6 \end{bmatrix} = \cdots = \begin{bmatrix} 1 & 0 & 1 & -3 \\ 1 & 1 & 0 & 1 \end{bmatrix} $
$ x^{\left( 2 \right)}= \begin{bmatrix} 0 & 1 & -3 \end{bmatrix} \text{ is BFS. } f_{2}=-15 $
$ \text{The third basis candidate is } \begin{pmatrix} a_{1} & a_{3} \end{pmatrix} $
$ \left [ A|b \right ] =\begin{bmatrix} 1 & 2 & -1 & 5 \\ 2 & 3 & -1 & 6 \end{bmatrix} = \cdots = \begin{bmatrix} 0 & 1 & 1 & 4 \\ 1 & 1 & 0 & 1 \end{bmatrix} $
$ x^{\left( 2 \right)}= \begin{bmatrix} 1 & 0 & -5 \end{bmatrix} \text{ is BFS. } f_{3}=-21 $
$ \because f_{1}>f_{2}>f_{3} $
$ \therefore \text{The optimal solution is } x^{*}=\begin{bmatrix} -3 & 4 & 0 \end{bmatrix} \text{ with objective value } -9 $
$ \color{blue} \text{Related Problem: Solve following linear programming problem,} $
minimize $ 3x_{1}+x_{2}+x_{3} $
subject to $ x_{1}+x_{3}=4 $
$ x_{2}-x_{3}=2 $
$ x_{1}\geq0,x_{2}\geq0,x_{3}\geq0, $
$ \color{blue}\text{Solution} $
$ \text{The equality constraints can be represented in the form } Ax=b, A= \begin{bmatrix} 1 & 0 & 1\\ 0 & 1 & -1 \end{bmatrix}=\begin{bmatrix} a_{1}& a_{2}& a_{3} \end{bmatrix} $
For basis candidate
Automatic Control (AC)- Question 3, August 2011
Go to
- Problem 1: solutions and discussions
- Problem 2: solutions and discussions
- Problem 3: solutions and discussions
- Problem 4: solutions and discussions
- Problem 5: solutions and discussions