Line 17: Line 17:
 
----
 
----
  
'''Theorem: '''
+
'''Theorem: '''  
  
A basic feasible solution is optimal if and only if the corresponding reduced cost coefficeints are all nonnegative.
+
A basic feasible solution is optimal if and only if the corresponding reduced cost coefficeints are all nonnegative.  
  
 
'''Simplex Method:'''  
 
'''Simplex Method:'''  
Line 25: Line 25:
 
1. Transform the given problem into standard form by introducing slack variables&nbsp;<span class="texhtml">''x''<sub>3</sub></span>&nbsp;and&nbsp;<span class="texhtml">''x''<sub>4</sub></span>.<span class="texhtml"><sub></sub></span>  
 
1. Transform the given problem into standard form by introducing slack variables&nbsp;<span class="texhtml">''x''<sub>3</sub></span>&nbsp;and&nbsp;<span class="texhtml">''x''<sub>4</sub></span>.<span class="texhtml"><sub></sub></span>  
  
2. Form a canonical augmented matrix corresponding to an initial basic feasible solution.
+
2. Form a canonical augmented matrix corresponding to an initial basic feasible solution.  
  
3. Calculate the reduced cost coefficients corresponding to the nonbasic variables.
+
3. Calculate the reduced cost coefficients corresponding to the nonbasic variables.  
  
4. If&nbsp;<math>r_{j}>\geq0</math>&nbsp;for all&nbsp;<math>j</math>, stop. -- the current basic feasible solution is optimal.
+
4. If&nbsp;<math>r_{j}>\geq0</math>&nbsp;for all&nbsp;<span class="texhtml">''j''</span>, stop. -- the current basic feasible solution is optimal.  
  
5. Select a&nbsp;<math>q</math>&nbsp;such that&nbsp;<math>r_{q}<0</math>
+
5. Select a&nbsp;<span class="texhtml">''q''</span>&nbsp;such that&nbsp;<span class="texhtml">''r''<sub>''q''</sub> &lt; 0</span>  
  
6. If no&nbsp;<math>y_{iq}>0</math>, stop. -- the problem is unbounded; else, calculate&nbsp;<math>p=argmin_{i}\left \{ y_{i0}/y_{iq}:y_{iq}>0 \right \}</math>.&nbsp;
+
6. If no&nbsp;<span class="texhtml">''y''<sub>''i''''q''</sub> &gt; 0</span>, stop. -- the problem is unbounded; else, calculate&nbsp;<math>p=argmin_{i}\left \{ y_{i0}/y_{iq}:y_{iq}>0 \right \}</math>.&nbsp;  
  
7. Update the canonical augmented matrix by pivoting about the&nbsp;<math>(p, q)</math>&nbsp;th element.
+
7. Update the canonical augmented matrix by pivoting about the&nbsp;<span class="texhtml">(''p'',''q'')</span>&nbsp;th element.  
  
 
8. Go to step 3.<br>  
 
8. Go to step 3.<br>  
Line 113: Line 113:
 
Go to  
 
Go to  
  
*Part 1: [[ECE-QE AC3-2011 solusion-1|solutions and discussions]]<br>
+
*Part 1: [[ECE-QE AC3-2011 solusion-1|solutions and discussions]]
 +
*Part 2: [[ECE-QE AC3-2011 solusion-2|solutions and discussions]]
 
*Part 3: [[ECE-QE AC3-2011 solusion-3|solutions and discussions]]  
 
*Part 3: [[ECE-QE AC3-2011 solusion-3|solutions and discussions]]  
 
*Part 4: [[ECE-QE AC3-2011 solusion-4|solutions and discussions]]  
 
*Part 4: [[ECE-QE AC3-2011 solusion-4|solutions and discussions]]  

Revision as of 19:05, 28 June 2012

ECE Ph.D. Qualifying Exam in "Automatic Control" (AC)

Question 3, Part 2, August 2011

Part 1,2,3,4,5

 $ \color{blue}\text{2. } \left( \text{20 pts} \right) \text{ Use the simplex method to solve the problem, } $

               maximize        x1 + x2

               $ \text{subject to } x_{1}-x_{2}\leq2 $
                                        $ x_{1}+x_{2}\leq6 $                                         

                                        $ x_{1},-x_{2}\geq0. $


Theorem: 

A basic feasible solution is optimal if and only if the corresponding reduced cost coefficeints are all nonnegative.

Simplex Method:

1. Transform the given problem into standard form by introducing slack variables x3 and x4.

2. Form a canonical augmented matrix corresponding to an initial basic feasible solution.

3. Calculate the reduced cost coefficients corresponding to the nonbasic variables.

4. If $ r_{j}>\geq0 $ for all j, stop. -- the current basic feasible solution is optimal.

5. Select a q such that rq < 0

6. If no yi'q > 0, stop. -- the problem is unbounded; else, calculate $ p=argmin_{i}\left \{ y_{i0}/y_{iq}:y_{iq}>0 \right \} $

7. Update the canonical augmented matrix by pivoting about the (p,q) th element.

8. Go to step 3.


$ \color{blue}\text{Solution 1:} $

   min   x1x2 
   subject to    x1x2 + x3 = 2 
                     x1 + x2 + x4 = 6 

                     $ x_{1},x_{2},x_{3},x_{4}\geq 0 $

$ \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 1 & 1 & 0 & 1 & 6 \\ -1 & -1 & 0 & 0 & 0 \end{matrix} \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 0 & 2 & -1 & 1 & 4 \\ 0 & -2 & 1 & 0 & 2 \end{matrix} \Rightarrow \begin{matrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 4\\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} $

$ \Rightarrow x_{1}=4, x_{2}=2, \text{the maximum value } x_{1}+x_{2}=6 $


$ \color{blue}\text{Solution 2:} $

Get standard form for simplex method   min   x1x2

                                                           subject to    x1x2 + x3 = 2

                                                                             x1 + x2 + x4 = 6

                                                                             $ x_{i}\geq0, i=1,2,3,4 $

$ \begin{matrix} & a_{1} & a_{2} & a_{3} & a_{4} & b\\ & 1 & -1 & 1 & 0 & 2\\ & 1 & 1 & 0 & 1 & 6 \\ c^{T} & -1 & -1 & 0 & 0 & 0 \end{matrix} $      $ \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 1 & 1 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 0 & 2 & -1 & 1 & 4 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} \Rightarrow \begin{matrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 4\\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} $

$ \therefore \text{the optimal solution to the original problem is } x^{*}= \begin{bmatrix} 4\\ 2 \end{bmatrix} $

The maximum value for   x1 + x2 is 6.


Automatic Control (AC)- Question 3, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Followed her dream after having raised her family.

Ruth Enoch, PhD Mathematics