Line 1: Line 1:
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Automatic Control" (AC)=
+
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]] in "Automatic Control" (AC) =
=Question 3, Part 2, August 2011  =
+
 
:[[ECE-QE_AC3-2011_solusion-1|Part 1]],[[ECE-QE_AC3-2011_solusion-2|2]],[[ECE-QE_AC3-2011_solusion-3|3]],[[ECE-QE_AC3-2011_solusion-4|4]],[[ECE-QE_AC3-2011_solusion-5|5]]  
+
= Question 3, Part 2, August 2011  =
 +
 
 +
:[[ECE-QE AC3-2011 solusion-1|Part 1]],[[ECE-QE_AC3-2011_solusion-2|2]],[[ECE-QE AC3-2011 solusion-3|3]],[[ECE-QE AC3-2011 solusion-4|4]],[[ECE-QE AC3-2011 solusion-5|5]]
 +
 
 
----
 
----
  
Line 13: Line 16:
  
 
----
 
----
Share and discuss your solutions below
+
 
 +
<math>\color{blue}\text{Discussion:}</math><br>
 +
 
 +
First, the given problem need to be transformed into standard form by introducing slack variables&nbsp;<math>x_{2}  x_{4}</math>
 +
 
 
----
 
----
 +
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
  
Line 83: Line 91:
 
----
 
----
  
Automatic Control (AC)- Question 3, August 2011
+
Automatic Control (AC)- Question 3, August 2011  
 +
 
 +
Go to
  
Go to
+
*Part 1: [[ECE-QE AC3-2011 solusion-1|solutions and discussions]]  
*Problem 1: [[ECE-QE_AC3-2011_solusion-1|solutions and discussions]]
+
*Part 2: [[ECE-QE_AC3-2011_solusion-2|solutions and discussions]]  
*Problem 2: [[ECE-QE_AC3-2011_solusion-2|solutions and discussions]]
+
*Part 3: [[ECE-QE AC3-2011 solusion-3|solutions and discussions]]  
*Problem 3: [[ECE-QE_AC3-2011_solusion-3|solutions and discussions]]
+
*Part 4: [[ECE-QE AC3-2011 solusion-4|solutions and discussions]]  
*Problem 4: [[ECE-QE_AC3-2011_solusion-4|solutions and discussions]]
+
*Part 5: [[ECE-QE AC3-2011 solusion-5|solutions and discussions]]
*Problem 5: [[ECE-QE_AC3-2011_solusion-5|solutions and discussions]]
+
  
 
----
 
----

Revision as of 18:02, 28 June 2012

ECE Ph.D. Qualifying Exam in "Automatic Control" (AC)

Question 3, Part 2, August 2011

Part 1,2,3,4,5

 $ \color{blue}\text{2. } \left( \text{20 pts} \right) \text{ Use the simplex method to solve the problem, } $

               maximize        x1 + x2

               $ \text{subject to } x_{1}-x_{2}\leq2 $
                                        $ x_{1}+x_{2}\leq6 $                                         

                                        $ x_{1},-x_{2}\geq0. $


$ \color{blue}\text{Discussion:} $

First, the given problem need to be transformed into standard form by introducing slack variables $ x_{2} x_{4} $


$ \color{blue}\text{Solution 1:} $

   min   x1x2 
   subject to    x1x2 + x3 = 2 
                     x1 + x2 + x4 = 6 

                     $ x_{1},x_{2},x_{3},x_{4}\geq 0 $

$ \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 1 & 1 & 0 & 1 & 6 \\ -1 & -1 & 0 & 0 & 0 \end{matrix} \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 0 & 2 & -1 & 1 & 4 \\ 0 & -2 & 1 & 0 & 2 \end{matrix} \Rightarrow \begin{matrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 4\\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} $

$ \Rightarrow x_{1}=4, x_{2}=2, \text{the maximum value } x_{1}+x_{2}=6 $


$ \color{blue}\text{Solution 2:} $

Get standard form for simplex method   min   x1x2

                                                           subject to    x1x2 + x3 = 2

                                                                             x1 + x2 + x4 = 6

                                                                             $ x_{i}\geq0, i=1,2,3,4 $

$ \begin{matrix} & a_{1} & a_{2} & a_{3} & a_{4} & b\\ & 1 & -1 & 1 & 0 & 2\\ & 1 & 1 & 0 & 1 & 6 \\ c^{T} & -1 & -1 & 0 & 0 & 0 \end{matrix} $      $ \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 1 & 1 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 0 & 2 & -1 & 1 & 4 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} \Rightarrow \begin{matrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 4\\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} $

$ \therefore \text{the optimal solution to the original problem is } x^{*}= \begin{bmatrix} 4\\ 2 \end{bmatrix} $

The maximum value for   x1 + x2 is 6


Automatic Control (AC)- Question 3, August 2011

Go to


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett