(New page: Category:ECE Category:QE Category:CNSIP Category:problem solving Category:random variables = ECE Ph.D. Qualifying Exam in Automatic Contro...) |
|||
Line 8: | Line 8: | ||
---- | ---- | ||
==Question== | ==Question== | ||
− | '''Part 1. | + | '''Part 1. ''' 20 pts |
+ | <font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue} \text{ Consider the optimization problem, }</math></span></font> | ||
+ | |||
+ | <math>\text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2}</math> | ||
+ | |||
+ | <math>\text{subject to } x_{1}\geq0, x_{2}\geq0</math><font color="#ff0000" face="serif" size="4"><br></font> | ||
+ | |||
+ | '''<math>\color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right]</math>'''<br> | ||
+ | |||
+ | <math>\color{blue}\left( \text{ii} \right) \text{Write down the second-order necessary condition for } x^{*} \text{. Does the point } x^{*} \text{ satisfy this condition?}</math><br> | ||
:'''Click [[ECE-QE_AC3-2011_solusion-1|here]] to view student [[ECE-QE_AC3-2011_solusion-1|answers and discussions]]''' | :'''Click [[ECE-QE_AC3-2011_solusion-1|here]] to view student [[ECE-QE_AC3-2011_solusion-1|answers and discussions]]''' |
Revision as of 04:20, 28 June 2012
ECE Ph.D. Qualifying Exam in Automatic Control (AC), Question 3, August 2011
Question
Part 1. 20 pts
$ \color{blue} \text{ Consider the optimization problem, } $
$ \text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2} $
$ \text{subject to } x_{1}\geq0, x_{2}\geq0 $
$ \color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] $
$ \color{blue}\left( \text{ii} \right) \text{Write down the second-order necessary condition for } x^{*} \text{. Does the point } x^{*} \text{ satisfy this condition?} $
- Click here to view student answers and discussions
Part 2.
- Click here to view student answers and discussions
Part 3.
- Click here to view student answers and discussions
Part 4.
- Click here to view student answers and discussions
Part 5. (20 pts)
- Click here to view student answers and discussions