Line 1: Line 1:
 
<br>  
 
<br>  
  
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]]: Automatic Control (AC)- Question 3, August 2011 =
+
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]]: Automatic Control (AC)- Question 3, August 2011 =
  
 
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{5. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, }</math></span></font>  
 
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{5. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, }</math></span></font>  
  
<font color="#ff0000"><span style="font-size: 19px;" /></font><math>\text{optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2}</math>
+
<font color="#ff0000">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;</font><math>\text{optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2}</math>  
  
<math>\text{subject to  }  x_{2}- x_{1}^{2}\geq0</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>\text{subject to  }  x_{2}- x_{1}^{2}\geq0</math>  
  
<math>2-x_{1}-x_{2}\geq0, x_{1}\geq0.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>2-x_{1}-x_{2}\geq0, x_{1}\geq0.</math>  
  
 
<math>\color{blue} \text{The point }  x^{*}=\begin{bmatrix}
 
<math>\color{blue} \text{The point }  x^{*}=\begin{bmatrix}
 
0 & 0  
 
0 & 0  
\end{bmatrix}^{T} \text{ satisfies the KKT conditions.}</math>
+
\end{bmatrix}^{T} \text{ satisfies the KKT conditions.}</math>  
  
<math>\color{blue}\left( \text{i} \right) \text{Does } x^{*} \text{ satisfy the FONC for minimum or maximum? Where are the KKT multipliers?}</math>
+
<math>\color{blue}\left( \text{i} \right) \text{Does } x^{*} \text{ satisfy the FONC for minimum or maximum? Where are the KKT multipliers?}</math>  
  
 
<math>\color{blue}\text{Solution 1:}</math>  
 
<math>\color{blue}\text{Solution 1:}</math>  
 +
 +
<math>\text{ Standard form: optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2}</math><br>
 +
 +
<math>\text{subject to  }  g_{1}\left( x \right) x_{1}^{2}-x_{2}\leq0</math>
 +
 +
<math>g_{2}\left( x \right) x_{1}+x_{2}-2\leq0</math>
 +
 +
<math>g_{3}\left( x \right) -x_{1}\leq0</math>
  
  
Line 29: Line 37:
 
----
 
----
  
Automatic Control (AC)- Question 3, August 2011<br>Problem 2: &nbsp;https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-2<br>Problem 3: &nbsp;https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-3<br>Problem 4: &nbsp;https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-4<br>Problem 5: &nbsp;https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-5<br>  
+
Automatic Control (AC)- Question 3, August 2011<br>Problem 1: &nbsp;https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion<br>Problem 2: &nbsp;https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-2<br>Problem 3: &nbsp;https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-3<br>Problem 4: &nbsp;https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-4<br>  
  
 
----
 
----

Revision as of 18:10, 27 June 2012


ECE Ph.D. Qualifying Exam: Automatic Control (AC)- Question 3, August 2011

 $ \color{blue}\text{5. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, } $

                            $ \text{optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} $

                        $ \text{subject to } x_{2}- x_{1}^{2}\geq0 $

                                                 $ 2-x_{1}-x_{2}\geq0, x_{1}\geq0. $

$ \color{blue} \text{The point } x^{*}=\begin{bmatrix} 0 & 0 \end{bmatrix}^{T} \text{ satisfies the KKT conditions.} $

$ \color{blue}\left( \text{i} \right) \text{Does } x^{*} \text{ satisfy the FONC for minimum or maximum? Where are the KKT multipliers?} $

$ \color{blue}\text{Solution 1:} $

$ \text{ Standard form: optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} $

$ \text{subject to } g_{1}\left( x \right) x_{1}^{2}-x_{2}\leq0 $

$ g_{2}\left( x \right) x_{1}+x_{2}-2\leq0 $

$ g_{3}\left( x \right) -x_{1}\leq0 $



$ \color{blue}\text{Solution 2:} $



Automatic Control (AC)- Question 3, August 2011
Problem 1:  https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion
Problem 2:  https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-2
Problem 3:  https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-3
Problem 4:  https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-4


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

has a message for current ECE438 students.

Sean Hu, ECE PhD 2009