(New page: <br> = ECE Ph.D. Qualifying Exam: Automatic Control (AC)- Question 3, August 2011 = ----  <font color="#ff0000"><span style="font-size: 19px;"><math>...)
 
Line 1: Line 1:
 
<br>  
 
<br>  
  
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]]: Automatic Control (AC)- Question 3, August 2011 =
+
= [[ECE PhD Qualifying Exams|ECE Ph.D. Qualifying Exam]]: Automatic Control (AC)- Question 3, August 2011 =
  
----
+
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{5. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, }</math></span></font>
  
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{1. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, }</math></span></font>  
+
<font color="#ff0000"><span style="font-size: 19px;" /></font><math>\text{optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2}</math>
 +
 
 +
<math>\text{subject to  }  x_{2}- x_{1}^{2}\geq0</math>
 +
 
 +
<math>2-x_{1}-x_{2}\geq0, x_{1}\geq0.</math>
 +
 
 +
<math>\color{blue} \text{The point }  x^{*}=\begin{bmatrix}
 +
0 & 0
 +
\end{bmatrix}^{T} \text{ satisfies the KKT conditions.}</math>
 +
 
 +
<math>\color{blue}\left( \text{i} \right) \text{Does } x^{*} \text{ satisfy the FONC for minimum or maximum? Where are the KKT multipliers?}</math>
  
 
<math>\color{blue}\text{Solution 1:}</math>  
 
<math>\color{blue}\text{Solution 1:}</math>  
 +
 +
  
 
----
 
----
Line 13: Line 25:
 
<math>\color{blue}\text{Solution 2:}</math>  
 
<math>\color{blue}\text{Solution 2:}</math>  
  
 +
<br>
  
 
----
 
----
  
Automatic Control (AC)- Question 3, August 2011<br>  
+
Automatic Control (AC)- Question 3, August 2011<br>Problem 2: &nbsp;https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-2<br>Problem 3: &nbsp;https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-3<br>Problem 4: &nbsp;https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-4<br>Problem 5: &nbsp;https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-5<br>  
<a href="https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-2">Problem 2</a><br>
+
<a href="https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-3">Problem 3</a><br>
+
<a href="https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-4">Problem 4</a><br>
+
<a href="https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-5">Problem 5</a><br>
+
  
 
----
 
----

Revision as of 18:02, 27 June 2012


ECE Ph.D. Qualifying Exam: Automatic Control (AC)- Question 3, August 2011

 $ \color{blue}\text{5. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, } $

<span style="font-size: 19px;" />$ \text{optimize} \left(x_{1}-2\right)^{2}+\left(x_{2}-1\right)^{2} $

$ \text{subject to } x_{2}- x_{1}^{2}\geq0 $

$ 2-x_{1}-x_{2}\geq0, x_{1}\geq0. $

$ \color{blue} \text{The point } x^{*}=\begin{bmatrix} 0 & 0 \end{bmatrix}^{T} \text{ satisfies the KKT conditions.} $

$ \color{blue}\left( \text{i} \right) \text{Does } x^{*} \text{ satisfy the FONC for minimum or maximum? Where are the KKT multipliers?} $

$ \color{blue}\text{Solution 1:} $



$ \color{blue}\text{Solution 2:} $



Automatic Control (AC)- Question 3, August 2011
Problem 2:  https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-2
Problem 3:  https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-3
Problem 4:  https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-4
Problem 5:  https://www.projectrhea.org/rhea/index.php/ECE-QE_AC3-2011_solusion-5


Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett