(New page: <br> = ECE Ph.D. Qualifying Exam: Automatic Control (AC)- Question 3, August 2011 = ----  <font color="#ff0000"><span style="font-size: 19px;"><math>...)
 
Line 7: Line 7:
 
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{3. } \left( \text{20 pts} \right) \text{ Solve the following linear program, }</math></span></font>  
 
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{3. } \left( \text{20 pts} \right) \text{ Solve the following linear program, }</math></span></font>  
  
<math>\text{maximize } -x_{1}-3x_{2}+4x_{3}</math><math>\text{maximize } -x_{1}-3x_{2}+4x_{3}</math><br>  
+
<span class="texhtml">maximize  − ''x''<sub>1</sub> − 3''x''<sub>2</sub> + 4''x''<sub>3</sub></span><br>  
  
===== <math>\color{blue}\text{Solution 1:}</math> =====
+
<span class="texhtml"><sub></sub></span>subject to &nbsp;<math>x_{1}+2x_{2}-x_{3}=5</math>
 +
 
 +
<math>2x_{1}+3x_{2}-x_{3}=6</math>
 +
 
 +
<math>x_{1} \text{ free, } x_{2}\geq0, x_{3}\leq0.</math>
 +
 
 +
===== <math>\color{blue}\text{Solution 1:}</math> =====
 +
 
 +
<math>\Rightarrow  x_{1}=5-2x_{2}+x_{3}=3-\frac{3}{2}x_{2}+\frac{1}{2}x_{3}</math>
 +
 
 +
<math>\Rightarrow x_{2}-x_{3}=4</math>

Revision as of 12:46, 27 June 2012


ECE Ph.D. Qualifying Exam: Automatic Control (AC)- Question 3, August 2011


 $ \color{blue}\text{3. } \left( \text{20 pts} \right) \text{ Solve the following linear program, } $

maximize − x1 − 3x2 + 4x3

subject to  $ x_{1}+2x_{2}-x_{3}=5 $

$ 2x_{1}+3x_{2}-x_{3}=6 $

$ x_{1} \text{ free, } x_{2}\geq0, x_{3}\leq0. $

$ \color{blue}\text{Solution 1:} $

$ \Rightarrow x_{1}=5-2x_{2}+x_{3}=3-\frac{3}{2}x_{2}+\frac{1}{2}x_{3} $

$ \Rightarrow x_{2}-x_{3}=4 $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal