Line 9: Line 9:
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<span class="texhtml">maximize''x''<sub>1</sub> + ''x''<sub>2</sub></span>  
 
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<span class="texhtml">maximize''x''<sub>1</sub> + ''x''<sub>2</sub></span>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{subject to  }  x_{1}-x_{2}\leq2</math><font color="#ff0000" face="serif" size="4"><br></font>'''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1}+x_{2}\leq6</math>'''
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{subject to  }  x_{1}-x_{2}\leq2</math><font color="#ff0000" face="serif" size="4"><br></font>'''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1}+x_{2}\leq6</math>''' &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1},-x_{2}\geq0.</math>
+
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1},-x_{2}\geq0.</math>  
  
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
 
===== <math>\color{blue}\text{Solution 1:}</math>  =====
  
<math>\text{Get standard form for simplex method } min -x_{1}-x_{2}</math>
+
<span class="texhtml">Get standard form for simplex method &nbsp; &nbsp;&nbsp;''m''''i''''n'' − ''x''<sub>1</sub> − ''x''<sub>2</sub></span>  
  
<math>\text{subject to  }  x_{1}-x_{2}+x_{3}=2</math>
+
<span class="texhtml">&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; subject to  ''x''<sub>1</sub> − ''x''<sub>2</sub> + ''x''<sub>3</sub> = 2</span>  
  
<math>x_{1}+x_{2}+x_{4}=6</math>
+
<span class="texhtml">''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;x''<sub>1</sub> + ''x''<sub>2</sub> + ''x''<sub>4</sub> = 6</span>  
  
<math>x_{i}\geq0    i=1,2,3,4</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{i}\geq0    i=1,2,3,4</math><br>  
  
  
Line 35: Line 36:
 
  1 & 1 & 0 & 1 & 6 \\  
 
  1 & 1 & 0 & 1 & 6 \\  
 
  0 & 0 & 0 & 1 & 6
 
  0 & 0 & 0 & 1 & 6
\end{matrix}</math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;
+
\end{matrix}</math>&nbsp; &nbsp; &nbsp; <math>\Rightarrow
 
+
<math>\Rightarrow
+
 
\begin{matrix}
 
\begin{matrix}
 
  1 & -1 & 1 & 0 & 2\\  
 
  1 & -1 & 1 & 0 & 2\\  
Line 48: Line 47:
 
  0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\  
 
  0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\  
 
  0 & 0 & 0 & 1 & 6
 
  0 & 0 & 0 & 1 & 6
\end{matrix}</math>
+
\end{matrix}</math>
 +
 
 +
<font color="#ff0000"><span style="font-size: 17px;">'''
 +
'''</span></font>
 +
 
 +
<math>\therefore \text{the optimal solution to the original problem is } x^{*}= \left[ \begin{bmatrix} 4\\ 2 \end{bmatrix} \right]</math>
 +
 
 +
<math>\text{The maximum value for } x_{2} + x_{2} − 2  \text{ is }6</math><font face="serif"><br></font>
  
 +
<br>
  
 +
----
  
<math>\therefore \text{the optimal solution to the original problem is } x^{*}=\begin{bmatrix}
+
[[ECE PhD Qualifying Exams|Back to ECE Qualifying Exams (QE) page]]
4\\ 2
+
\end{bmatrix}}</math>
+
  
<math>\text{The maximum value for } x_{1}+x-{2} \text{ is } 6</math>
+
[[Category:ECE]] [[Category:QE]] [[Category:Automatic_Control]] [[Category:Problem_solving]]

Revision as of 11:48, 27 June 2012


ECE Ph.D. Qualifying Exam: Automatic Control (AC)- Question 3, August 2011


 $ \color{blue}\text{2. } \left( \text{20 pts} \right) \text{ Use the simplex method to solve the problem, } $

               maximizex1 + x2

               $ \text{subject to } x_{1}-x_{2}\leq2 $
                                        $ x_{1}+x_{2}\leq6 $                                         

                                        $ x_{1},-x_{2}\geq0. $

$ \color{blue}\text{Solution 1:} $

Get standard form for simplex method     m'i'nx1x2

                                                            subject to x1x2 + x3 = 2

                                                                           x1 + x2 + x4 = 6

                                                                            $ x_{i}\geq0 i=1,2,3,4 $


$ \begin{matrix} & a_{1} & a_{2} & a_{3} & a_{4} & b\\ & 1 & -1 & 1 & 0 & 2\\ & 1 & 1 & 0 & 1 & 6 \\ c^{T} & -1 & -1 & 0 & 0 & 0 \end{matrix} \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 1 & 1 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} $      $ \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 0 & 2 & -1 & 1 & 4 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} \Rightarrow \begin{matrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 4\\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} $

$ \therefore \text{the optimal solution to the original problem is } x^{*}= \left[ \begin{bmatrix} 4\\ 2 \end{bmatrix} \right] $

$ \text{The maximum value for } x_{2} + x_{2} − 2 \text{ is }6 $



Back to ECE Qualifying Exams (QE) page

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett