(New page: <br> = ECE Ph.D. Qualifying Exam: Automatic Control (AC)- Question 3, August 2011 = ----  <font color="#ff0000"><span style="font-size: 19px;"><math>...)
 
Line 7: Line 7:
 
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{2. } \left( \text{20 pts} \right) \text{ Use the simplex method to solve the problem, }</math></span></font>  
 
&nbsp;<font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{2. } \left( \text{20 pts} \right) \text{ Use the simplex method to solve the problem, }</math></span></font>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{maximize} x_{1}+x_{2}</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<span class="texhtml">maximize''x''<sub>1</sub> + ''x''<sub>2</sub></span>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{subject to  }  x_{1}-x_{2}\leq2</math><font color="#ff0000" face="serif" size="4"><br></font>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{subject to  }  x_{1}-x_{2}\leq2</math><font color="#ff0000" face="serif" size="4"><br></font>'''&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1}+x_{2}\leq6</math>'''
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>x_{1},-x_{2}\geq0.</math>
  
'''<math>\color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right]</math>'''<br>
+
===== <math>\color{blue}\text{Solution 1:}</math> =====
  
===== <math>\color{blue}\text{Solution 1:}</math> =====
+
<math>\text{Get standard form for simplex method } min -x_{1}-x_{2}</math>
 +
 
 +
<math>\text{subject to  }  x_{1}-x_{2}+x_{3}=2</math>
 +
 
 +
<math>x_{1}+x_{2}+x_{4}=6</math>
 +
 
 +
<math>x_{i}\geq0    i=1,2,3,4</math>
 +
 
 +
 
 +
 
 +
<math>\begin{matrix}
 +
& a_{1} & a_{2} & a_{3} & a_{4} & b\\
 +
& 1 & -1 & 1 & 0 & 2\\
 +
& 1 & 1 & 0 & 1 & 6 \\
 +
c^{T} & -1 & -1 & 0 & 0 & 0
 +
\end{matrix}
 +
\Rightarrow
 +
\begin{matrix}
 +
1 & -1 & 1 & 0 & 2\\
 +
1 & 1 & 0 & 1 & 6 \\
 +
0 & 0 & 0 & 1 & 6
 +
\end{matrix}</math>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;
 +
 
 +
<math>\Rightarrow
 +
\begin{matrix}
 +
1 & -1 & 1 & 0 & 2\\
 +
0 & 2 & -1 & 1 & 4 \\
 +
0 & 0 & 0 & 1 & 6
 +
\end{matrix}
 +
\Rightarrow
 +
\begin{matrix}
 +
1 & 0 & \frac{1}{2} & \frac{1}{2} & 4\\
 +
0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\
 +
0 & 0 & 0 & 1 & 6
 +
\end{matrix}</math>
 +
 
 +
 
 +
 
 +
<math>\therefore \text{the optimal solution to the original problem is } x^{*}=\begin{bmatrix}
 +
4\\ 2
 +
\end{bmatrix}}</math>
 +
 
 +
<math>\text{The maximum value for } x_{1}+x-{2} \text{ is } 6</math>

Revision as of 11:43, 27 June 2012


ECE Ph.D. Qualifying Exam: Automatic Control (AC)- Question 3, August 2011


 $ \color{blue}\text{2. } \left( \text{20 pts} \right) \text{ Use the simplex method to solve the problem, } $

               maximizex1 + x2

               $ \text{subject to } x_{1}-x_{2}\leq2 $
                                        $ x_{1}+x_{2}\leq6 $                                         $ x_{1},-x_{2}\geq0. $

$ \color{blue}\text{Solution 1:} $

$ \text{Get standard form for simplex method } min -x_{1}-x_{2} $

$ \text{subject to } x_{1}-x_{2}+x_{3}=2 $

$ x_{1}+x_{2}+x_{4}=6 $

$ x_{i}\geq0 i=1,2,3,4 $


$ \begin{matrix} & a_{1} & a_{2} & a_{3} & a_{4} & b\\ & 1 & -1 & 1 & 0 & 2\\ & 1 & 1 & 0 & 1 & 6 \\ c^{T} & -1 & -1 & 0 & 0 & 0 \end{matrix} \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 1 & 1 & 0 & 1 & 6 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} $          

$ \Rightarrow \begin{matrix} 1 & -1 & 1 & 0 & 2\\ 0 & 2 & -1 & 1 & 4 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} \Rightarrow \begin{matrix} 1 & 0 & \frac{1}{2} & \frac{1}{2} & 4\\ 0 & 1 & -\frac{1}{2} & \frac{1}{2} & 2 \\ 0 & 0 & 0 & 1 & 6 \end{matrix} $


$ \therefore \text{the optimal solution to the original problem is } x^{*}=\begin{bmatrix} 4\\ 2 \end{bmatrix}} $

$ \text{The maximum value for } x_{1}+x-{2} \text{ is } 6 $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett