(New page: ==Question from ECE QE CS Q1 August 2000== ---- ==Share and discuss your solutions below.== ---- =Solution 1 (retrived from [[ECE600_QE_2000_August|her...)
 
Line 1: Line 1:
 
==Question from [[ECE_PhD_QE_CNSIP_2000_Problem1|ECE QE CS Q1 August 2000]]==  
 
==Question from [[ECE_PhD_QE_CNSIP_2000_Problem1|ECE QE CS Q1 August 2000]]==  
 
+
<math class="inline">\mathbf{X}\left(t\right)</math>  is a WSS process with its psd zero outside the interval <math class="inline">\left[-\omega_{max},\ \omega_{max}\right]</math> . If <math class="inline">R\left(\tau\right)</math>  is the autocorrelation function of <math class="inline">\mathbf{X}\left(t\right)</math> , prove the following: <math class="inline">R\left(0\right)-R\left(\tau\right)\leq\frac{1}{2}\omega_{max}^{2}\tau^{2}R\left(0\right).</math> (Hint: <math class="inline">\left|\sin\theta\right|\leq\left|\theta\right|</math> ).
 
----
 
----
 
==Share and discuss your solutions below.==
 
==Share and discuss your solutions below.==

Revision as of 07:54, 27 June 2012

Question from ECE QE CS Q1 August 2000

$ \mathbf{X}\left(t\right) $ is a WSS process with its psd zero outside the interval $ \left[-\omega_{max},\ \omega_{max}\right] $ . If $ R\left(\tau\right) $ is the autocorrelation function of $ \mathbf{X}\left(t\right) $ , prove the following: $ R\left(0\right)-R\left(\tau\right)\leq\frac{1}{2}\omega_{max}^{2}\tau^{2}R\left(0\right). $ (Hint: $ \left|\sin\theta\right|\leq\left|\theta\right| $ ).


Share and discuss your solutions below.


Solution 1 (retrived from here)


Solution 2

Write it here.


Back to QE CS question 1, August 2000

Back to ECE Qualifying Exams (QE) page

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal