Line 1: | Line 1: | ||
= ECE QE AC-3 August 2011 Solusion = | = ECE QE AC-3 August 2011 Solusion = | ||
− | <font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{1. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, }</math></span></font> | + | <font color="#ff0000"><span style="font-size: 19px;"><math>\color{blue}\text{1. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, }</math></span></font> |
<math>\text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2}</math> | <math>\text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2}</math> | ||
Line 11: | Line 11: | ||
===== <math>\color{blue}\text{Solution 1:}</math> ===== | ===== <math>\color{blue}\text{Solution 1:}</math> ===== | ||
− | <math>\text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0,</math><br> | + | <math>\text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0,</math> ...<br> |
<br> | <br> | ||
Line 17: | Line 17: | ||
<math>\color{blue}\text{Solution 2:}</math> | <math>\color{blue}\text{Solution 2:}</math> | ||
− | <math>d\in\Re_{2}, d\neq0 \text{ is a feasible direction at } x^{*} \text{, if } \exists\alpha_{0} \text{ that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0}</math> <br> | + | <math>d\in\Re_{2}, d\neq0 \text{ is a feasible direction at } x^{*} \text{, if } \exists \alpha_{0} \text{ that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0}</math> <br> |
'''<math>\because \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix}</math>''' | '''<math>\because \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix}</math>''' |
Revision as of 21:56, 21 June 2012
ECE QE AC-3 August 2011 Solusion
$ \color{blue}\text{1. } \left( \text{20 pts} \right) \text{ Consider the optimization problem, } $
$ \text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2} $
$ \text{subject to } x_{1}\geq0, x_{2}\geq0 $
$ \color{blue}\left( \text{i} \right) \text{ Characterize feasible directions at the point } x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] $
$ \color{blue}\text{Solution 1:} $
$ \text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0, $ ...
$ \color{blue}\text{Solution 2:} $
$ d\in\Re_{2}, d\neq0 \text{ is a feasible direction at } x^{*} \text{, if } \exists \alpha_{0} \text{ that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0} $
$ \because \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix} $
$ \therefore d= \left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re^{2}, d_{2}\neq0 $