Line 1: Line 1:
 
= ECE QE AC-3 August 2011 Solusion  =
 
= ECE QE AC-3 August 2011 Solusion  =
  
==== 1. (20 pts) Consider the optimization problem,  ====
+
==== <span class="texhtml">1. (20 pts) Consider the optimization problem,</span><br> ====
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; maximize &nbsp;&nbsp;<math>-x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2}</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2}</math>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; subject to &nbsp;&nbsp;<math>x_{1}\geq0, x_{2}\geq0</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>\text{subject to  }  x_{1}\geq0, x_{2}\geq0</math>  
  
===== (i) Characterize feasible directions at the point &nbsp;<math>x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right]</math> =====
+
<span class="texhtml">(i) Characterize feasible directions at the point</span><math>x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right]</math>  
  
===== Solusion 1:  =====
+
===== <math>\color{blue}\text{Solution 1:}</math> =====
  
We need to find a direction&nbsp;<span class="texhtml">''d''</span>, such that&nbsp;<math>\exists\alpha_{0}>0,</math>,&nbsp;
+
<math>\text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0,</math><br>
  
===== Solusion 2: =====
+
<math>\color{blue}\text{Solution 2:}</math>
  
<math>d\in\Re_{2}, d\neq0</math>&nbsp;is a feasible direction at &nbsp;<span class="texhtml">''x''<sup> * </sup></span>, if &nbsp;<math>\exists\alpha_{0}</math>&nbsp; that &nbsp;<math>\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega</math>&nbsp; for all&nbsp;<math>0\leq\alpha\leq\alpha_{0}</math><br>
+
<math>d\in\Re_{2}, d\neq0 \text{ is a feasible direction at } x^{*} \text{, if}</math>&nbsp;<math>\exists\alpha_{0}</math>&nbsp;  
  
'''<math>\begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix}</math>'''  
+
<math>\text{that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0}</math>&nbsp;<br>
 +
 
 +
'''<math>\because \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix}</math>'''  
  
 
<br> <math>\therefore d=
 
<br> <math>\therefore d=

Revision as of 21:20, 21 June 2012

ECE QE AC-3 August 2011 Solusion

1. (20 pts) Consider the optimization problem,

               $ \text{maximize} -x_{1}^{2}+x_{1}-x_{2}-x_{1}x_{2} $

               $ \text{subject to } x_{1}\geq0, x_{2}\geq0 $

(i) Characterize feasible directions at the point$ x^{*}=\left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] $

$ \color{blue}\text{Solution 1:} $

$ \text{We need to find a direction }d\text{, such that } \exists\alpha_{0}>0, $

$ \color{blue}\text{Solution 2:} $

$ d\in\Re_{2}, d\neq0 \text{ is a feasible direction at } x^{*} \text{, if} $ $ \exists\alpha_{0} $ 

$ \text{that } \left[ \begin{array}{c} \frac{1}{2} \\ 0 \end{array} \right] + \alpha\left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right] \in\Omega \text{ for all } 0\leq\alpha\leq\alpha_{0} $ 

$ \because \begin{Bmatrix}x\in\Omega: x_{1}\geq0, x_{2}\geq0\end{Bmatrix} $


$ \therefore d= \left[ \begin{array}{c} d_{1} \\ d_{2} \end{array} \right], d_{1}\in\Re^{2}, d_{2}\neq0 $

(ii) Write down the second-order necessary condition for . Does the point satisfy this condition?

Alumni Liaison

Meet a recent graduate heading to Sweden for a Postdoctorate.

Christine Berkesch