Line 3: | Line 3: | ||
''Vector Transformations:'' | ''Vector Transformations:'' | ||
− | A ''vector transformation'' is a function that is performed on a vector. (i.e. f: | + | A ''vector transformation'' is a function that is performed on a vector. (i.e. f:X->Y) |
+ | |||
+ | <math>f:\left(\begin{array}{c}x_1\\x_2\\.\\.\\a_n\end{array}\right)-> \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_n\end{array}\right)</math> | ||
+ | |||
+ | <math>Where X = \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right) and Y = \left(\begin{array}{c}y_1\\x_y\\.\\.\\x_y\end{array}\right</math> | ||
− | |||
− | |||
''Linear Transformations:'' | ''Linear Transformations:'' | ||
Line 24: | Line 26: | ||
− | + | <math>\left(\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right)</math> | |
[[Category:MA265Fall2011Walther]] | [[Category:MA265Fall2011Walther]] |
Revision as of 15:32, 14 December 2011
Linear Transformations and Isomorphisms
Vector Transformations:
A vector transformation is a function that is performed on a vector. (i.e. f:X->Y)
$ f:\left(\begin{array}{c}x_1\\x_2\\.\\.\\a_n\end{array}\right)-> \left(\begin{array}{c}y_1\\y_2\\.\\.\\y_n\end{array}\right) $
$ Where X = \left(\begin{array}{c}x_1\\x_2\\.\\.\\x_n\end{array}\right) and Y = \left(\begin{array}{c}y_1\\x_y\\.\\.\\x_y\end{array}\right $
Linear Transformations:
A function L:V->W is a linear transformation of V to W if the following are true:
(1) L(u+v) = L(u) + L(v) (2) L(c*u) = c*L(u)
In other words, a linear transformation is a vector transformation that also meets (1) and (2).
$ \left(\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right) $