Line 1: Line 1:
<div style="font-family: Verdana, sans-serif; font-size: 14px; text-align: justify; width: 80%; margin: auto; border: 1px solid #aaa; padding: 1em; text-align:right;">
+
<div style="font-family: Verdana, sans-serif; font-size: 14px; text-align: center; width: 70%; margin: auto; border: 1px solid #aaa; padding: 1em; text-align:center;">
 
{|
 
{|
 
|-
 
|-
|'''If you enjoy using this [[Collective_Table_of_Formulas|collective table of formulas]], please consider  [https://donate.purdue.edu/DesignateGift.aspx?allocation=017637&appealCode=11213&amount=25&allocationDescription=RheaProjectMimiBoutin donating to Project Rhea] or [[Donations | becoming a sponsor]].'''
+
|  
| [[Image:DonateNow.png]]
+
'''This [[Collective Table of Formulas|Collective table of formulas]] is proudly sponsored'''<br> '''by the [http://www.facebook.com/hkn.beta Nice Guys of Eta Kappa Nu].''' <br><br> Visit us at the HKN Lounge in EE24 for hot coffee and fresh bagels only $1 each!
|-
+
 
 +
| &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;[[Image:HKNlogo.jpg]]
 
|}
 
|}
</div>
+
</div>  
  
  

Revision as of 05:25, 5 April 2012

This Collective table of formulas is proudly sponsored
by the Nice Guys of Eta Kappa Nu.

Visit us at the HKN Lounge in EE24 for hot coffee and fresh bagels only $1 each!

                                         HKNlogo.jpg


Probability Distributions
Random variable Probability density function $ f_{x}(x) $ Mean Variance Characteristic function $ \Phi_{x}(\omega) $
Normal or Gaussian $ N(\mu,\sigma^{2}) $ $ \dfrac{1}{\sqrt{2\pi\sigma^{2}}}e^{-(x-\mu)^{2}/2\sigma^{2}} $, $ -\infty<x<\infty $ $ \mu\ $ $ \sigma^{2}\ $ $ e^{j\mu\omega-\sigma^{2}\omega^{2}/2} $
Exponential $ E(\lambda) $ $ \lambda e^{-\lambda x},x\geq0,\lambda>0 $ $ \dfrac{1}{\lambda} $ $ \dfrac{1}{\lambda^{2}} $
Gamma $ G(\alpha,\beta) $ $ \dfrac{x^{\alpha-1}}{\Gamma(\alpha)\beta^{\alpha}}e^{-x/\beta},x\geq0,\alpha<0,\beta>0 $ $ \alpha\beta\ $ $ \alpha\beta^{2}\ $
Erlang- $ k $ $ \dfrac{(k\lambda)^{\lambda}}{(k-1)!}x^{k-1}e^{-k\lambda x} $ $ \dfrac{1}{\lambda} $ $ \dfrac{1}{k\lambda^{2}} $
Chi-square $ \chi^{2}(n) $ $ \dfrac{x^{n/2-1}}{2^{n/2}\Gamma(n/2)}e^{-x/2},x\geq0 $ $ n\ $ $ 2n\ $
Rayleigh $ \dfrac{x}{\sigma^{2}}e^{-x^{2}/2\sigma^{2}},x\geq0 $ $ \sqrt{\dfrac{\pi}{2}\sigma} $ $ (2-\pi/2)\sigma^{2}\ $
Uniform $ U(a,b) $ $ \dfrac{1}{b-a},a<x<b $ $ \dfrac{a+b}{2} $ $ \dfrac{(b-a)^{2}}{12} $
Beta $ \beta(\alpha,\beta) $ $ \dfrac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1},0<x<1,\alpha>0,\beta>0 $ $ \dfrac{\alpha}{\alpha+\beta} $ $ \dfrac{\alpha\beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)} $
Cauchy $ \dfrac{\alpha/\pi}{(x-\mu)^{2}+\alpha^{2}} $ - $ \infty $ $ e^{j\omega\mu}e^{-\alpha|\omega|} $
Nakagami $ \dfrac{2}{\Gamma(m)}(\dfrac{m}{\Omega})^{m}x^{2m-1}e^{-\dfrac{m}{\Omega}x^{2}} $ $ \dfrac{\Gamma(m+1/2)}{\Gamma(m)}\sqrt{\dfrac{\Omega}{m}} $ $ \Omega(1-\dfrac{1}{m}(\dfrac{\Gamma(m+1/2)}{\Gamma(m)})^{2}) $
Students $ f(n) $ $ \dfrac{\Gamma((n+1)/2)}{\sqrt{\pi n}\Gamma(n/2)}(\dfrac{m}{n})^{m/2}x^{m/2-1}(1+\dfrac{mx}{n})^{-(m+n)/2},x>0 $ 0 $ \dfrac{n}{n-2},n>2 $
$ F- $ distribution $ \dfrac{\Gamma((n+1)/2)}{\sqrt{\pi n}\Gamma(n/2)}(\dfrac{m}{n})^{m/2}x^{m/2-1}(1+\dfrac{mx}{n})^{-(m+n)/2},x>0 $ $ \dfrac{n}{n-2},n>2 $ $ \dfrac{n^{2}(2m+2n-4)}{m(n-2)^{2}(n-4)},n>4 $
Bernoulli $ P(X=1)=p,P(X=0)=1-p=q\ $ $ p\ $ $ p(1-p)\ $ $ pe^{j\omega}+q\ $ \tabularnewline
Binomial $ B(n,p) $ $ (\binom{n}{k}p^{k}q^{n-k}), $ $ k=0,1,2,\cdots n,p+q=1 $ $ np\ $ $ npq\ $ $ (pe^{j\omega}+q)^{n} $ \tabularnewline
Poisson $ P(\lambda) $ $ \dfrac{e^{-\lambda}\lambda^{k}}{k!},k=0,1,2,\cdots,\infty $ $ \lambda\ $ $ \lambda\ $ $ e^{-\lambda(1-e^{j\omega})} $ \tabularnewline
Hypergeometric $ \dfrac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}}, $ $ max(0,M+n-N)\leq k\leq min(M,n) $ $ \dfrac{nM}{N} $ $ n\dfrac{M}{N}(1-\dfrac{M}{N})(1-\dfrac{n-1}{N-1}) $
Geometric $ \begin{cases} \dfrac{pq^{k},k=0,1,2\ldots,\infty}{pq^{k-1},k=1,2\ldots,\infty,p+q=1} | | .\end{cases} $ $ {\dfrac{q}{p}\atop \dfrac{1}{p}} $ $ \dfrac{q}{p^{2}} $ $ \dfrac{p}{1-qe^{j\omega}} $ or $ \dfrac{p}{e^{-j\omega}-q} $
Pascal or negative binomial $ NB(r,p) $ $ \begin{cases} \dfrac{\binom{r+k-1}{k}p^{r}q^{k},k=0,1,2,\ldots,\infty}{\binom{k-1}{r-1}p^{r}q^{k-r},k=r,r+1,\ldots,\infty,p+q=1} | | .\end{cases} $ $ {\dfrac{rq}{p}\atop \dfrac{r}{p}} $ $ \dfrac{rq}{p^{2}} $ $ (\dfrac{p}{1-qe^{-j\omega}})^{r} $ or( $ \dfrac{p}{e^{-j\omega}-q}) $
Discrete uniform $ 1/N,k=1,2,\ldots,N $ $ \dfrac{N+1}{2} $ $ \dfrac{N^{2}-1}{12} $ $ e^{j(N+1)\omega/2}\dfrac{sin(Nw/2)}{sin(\omega/2)} $

Go to Relevant Course Page: ECE600

Back to Collective Table

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett