Line 1: Line 1:
=== Determinants  ===
+
= Determinants  =
  
 
----
 
----
Line 5: Line 5:
 
----
 
----
  
''<u>'''1. Introduction:'''</u>''  
+
== ''<u>'''1. Introduction:'''</u>'' ==
  
 
----
 
----
Line 11: Line 11:
 
----
 
----
  
''<br>''
+
<u></u>
 +
 
 +
The determinants is directly associated with a square matrix A when the determinant is A. Determinants arose in the solution of linear systems and are really usefull for the study of linear transformations. Lets S = {1,2,...,n} be the set of integers from 1 to n, arranged in ascending order. A rearrangement j1,j2,...,jn of the elements of S is called a permutation of S. We can consider a permutation of S to be a one-to-one mapping of S onto itself.
  
 
If A is a square matrix then the '''determinant function''' is denoted by '''det '''and '''det(A)'''  
 
If A is a square matrix then the '''determinant function''' is denoted by '''det '''and '''det(A)'''  
Line 47: Line 49:
 
----
 
----
  
<u>'''''2. Properties of Determinants:'''''</u>  
+
== <u>'''''2. Properties of Determinants:'''''</u> ==
  
 
----
 
----
Line 87: Line 89:
 
----
 
----
  
'''''<u>3. Cofactor Expansion:&nbsp;</u>'''''  
+
== '''''<u>3. Cofactor Expansion:&nbsp;</u>''''' ==
  
 
----
 
----
Line 119: Line 121:
 
----
 
----
  
<u>'''''4. Inverse of a Matrix:'''''</u>  
+
== <u>'''''4. Inverse of a Matrix:'''''</u> ==
  
 
----
 
----
Line 145: Line 147:
 
----
 
----
  
<u>'''''5. Other applications of Determinants:'''''</u>  
+
== <u>'''''5. Other applications of Determinants:'''''</u> ==
  
 
----
 
----

Revision as of 18:30, 7 December 2011

Determinants



1. Introduction:



The determinants is directly associated with a square matrix A when the determinant is A. Determinants arose in the solution of linear systems and are really usefull for the study of linear transformations. Lets S = {1,2,...,n} be the set of integers from 1 to n, arranged in ascending order. A rearrangement j1,j2,...,jn of the elements of S is called a permutation of S. We can consider a permutation of S to be a one-to-one mapping of S onto itself.

If A is a square matrix then the determinant function is denoted by det and det(A)

For an instance we have a 2 x 2 matrix denominated A, therefore:


                                                                                      $ det(A)=\left(\begin{array}{cccc}a11&a12\\a21&a22\end{array}\right) $

As we already defined the determinant function we can write some formulas. The formulas for any 2 x 2 and 3 x 3 matrix will be:

                     

                      The determinant function for a 2 x 2 matrix is:


                                                                                      $ det(A)=\left(\begin{array}{cccc}a11&a12\\a21&a22\end{array}\right) $ 

                                                                                               = (a11 * a22) - (a12 * a21 )                        

                   

                      The determinant function for a 3 x 3 matrix is: 


                                                                               $ det(A)=\left(\begin{array}{cccc}a11&a12&a13\\a21&a22&a23\\a31&a32&a33\end{array}\right) $

                                         = (a11 * a22 * a33) + (a12 * a23 * a31) + (a13 * a21 * a32) - (a12 * a21 * a33) - (a11 * a23 * a32) - (a13 * a22 * a31



2. Properties of Determinants:




Theorem 1: Let A be an n x n matrix then; det(A) = det(At)


Theorem 2: If a matrix B results from matrix A by interchanging two different rows (columns) of A, then; det(B) = - det(A) 


Theorem 3: If two rows (columns) of A are equal, then; det(A) = 0


Theorem 4: If a row (column) of A consists entirely of zeros, then; det(A) = 0


Theorem 5: If B obtained from A by multiplying a row (column) of A by a real number k, then;det(B) = kdet(A)    

 

Theorem 6: If B = [bij] is obained from A = [aij] by adding to each element of the rth row (column) of A, k times the corresponding element of the sth row (column), r not equal s, of A, then; det(B) = det(A)


Theorem 7: If a matrix A = [aij] is upper (lower) triangular, then; det(A) = a11*a12...ann ; tha is, the determinant of a triangular matrix is the product of the element on themain diagonal.                                                       


Theorem 8: If A is an n x n matrix, then A is nonsingular if and only if det(A) not equal 0


Theorem 9: If A and B are n x n matrices, then; det(AB) = det(A)det(B)




3. Cofactor Expansion: 




The cofactor expansion is a method for evaluating the determinant of an n xn matrix that reduces the problem to the evaluation of determinants of matrices of order n - 1. We should repeat the proces of (n-1) x (n-1) until we have a 2 x 2 matrices. 


Let A = [aij] be an n x n matrix. Let Mij be the (n-1) x (n-1) submatrix of A obtained by deleting the ith row and jth row column of A. The determinant det(Mij) is called the minor aij. Also, Let A = [aij] be an n x n matrix. The cofactor Aij of aij is defined as Aij = (-1)i+j det(Mij)


Theorem 10: Let A = [aij] be an n x n matrix. then;

                                det(A) = ai1Ai1+ai2Ai2+...+ainAin                             and                        det(A)=a1jA1j+a2jA2j+...+anjAnj

                            [expansion of det(A) along the ith row]                                                [expansion of det(A) along the jth column]




4. Inverse of a Matrix:




Theorem 11: If A = [aij] is an n x nmatrix, then; 

                                      ai1Akl+ai2Ak2+...+ainAkn = 0    for i not equal k    ;    a1jA1k+a2jA2k+...+anjAnk    for j not equal k


Let A = [aij] be an n x n matrix. Then n xn adj A, called the adjoint of A, is the matrix whose (i,j)th entry is the cofactor Aji of aji. Thus;


                                                                     $ adj A=\left(\begin{array}{cccc}A11&A21&...&An1\\A12&A22&...&An2\\...&...&...&...\\A1n&A2n&...&Ann\end{array}\right) $


Theorem 12: If A = [aij] is an n x n matrix, then; A(adj A) = (adj A)A = det(A)In.



5. Other applications of Determinants:




To obtain another method for solving a linear system of n equations in n unknowns is known as the Cramer's Rule.


Theorem 13: Cramer's Rule

                                                                        Let;

                                                                                           a11x1 + a12x2 + ... + a1nxn = b1

                                                                                           a21x1 + a22x2 + ... + a2nxn = b2

                                                                                                                   ... 

                                                                                           an1x1 + an2x2 + ... + annxn = bn

       be a linear system of n equations in n unknowns, and let A = [aij] be the coefficient matrix so that we can write the given system as Ax = b, where


                                                                                                    $ b=\left(\begin{array}{cccc}b1\\b2\\...\\bn\end{array}\right) $


                                                                     If det(A) not equal 0, then the system has the unique solutions


                                                               x1 = det(A1)/det(A),      x2 = det(A2)/det(A),      ...,      xn = det(An)/det(A),


                                                            where Ai is the matrix obtained from A by replacing the ith column of A by b.  



INFO: We note that Cramer's rule is only applicable when we have n equations in n unknowns and the coefficient matrix A is nonsingular. If we are facing a linear system of n equations in n unknowns whose coefficient matrix is singular, we must use the Gaussian elimination or Gauss-Jordan reduction methods.


NOTE; At this point of learning we have shown the following:

1. A is nonsingular

2. Ax = 0 has only the trival solution

3. A is row (column) equivalent to In

4. The linear system Ax = b has a unique solution for every n x 1 matrix b.

5. A is a product of elementray matrices

6. det(A) not equal 0

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach