Line 93: Line 93:
 
<u>Theorem 10:</u> Let A = [aij] be an n x n matrix. then;  
 
<u>Theorem 10:</u> Let A = [aij] be an n x n matrix. then;  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; det(A) = a<sub>i1</sub>A<sub>i1</sub>+a<sub>i2</sub>A<sub>i2</sub>+...+a<sub>in</sub>A<sub>in</sub> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; and &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;det(A)=a<sub>1j</sub>A<sub>1j</sub>+a<sub>2j</sub>A<sub>2j</sub>+...+a<sub>nj</sub>A<sub>nj</sub>  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; det(A) = a<sub>i1</sub>A<sub>i1</sub>+a<sub>i2</sub>A<sub>i2</sub>+...+a<sub>in</sub>A<sub>in</sub> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; and &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;det(A)=a<sub>1j</sub>A<sub>1j</sub>+a<sub>2j</sub>A<sub>2j</sub>+...+a<sub>nj</sub>A<sub>nj</sub>  
  
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;[expansion of det(A) along the ''i''th row] &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;[expansion of det(A) along the ''j''th column]  
+
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; [expansion of det(A) along the ''i''th row] &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;[expansion of det(A) along the ''j''th column]  
  
 
<br>  
 
<br>  
Line 103: Line 103:
 
----
 
----
  
<u>'''''Inverse of a Matrix:'''''</u>
+
<u>'''''Inverse of a Matrix:'''''</u>  
  
<u>''</u>
+
&lt;u&lt;/u&gt;
  
Theorem 11:&nbsp;
+
<br>
 +
 
 +
<u>Theorem 11:</u> If A = [aij] is an n x nmatrix, then;&nbsp;
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; a<sub>i1</sub>A<sub>kl</sub>+a<sub>i2</sub>A<sub>k2</sub>+...+a<sub>in</sub>A<sub>kn</sub> = 0 &nbsp; &nbsp;for ''i'' not equal ''k'' &nbsp; &nbsp;; &nbsp; &nbsp;a<sub>1j</sub>A<sub>1k</sub>+a<sub>2j</sub>A<sub>2k</sub>+...+a<sub>nj</sub>A<sub>nk</sub> &nbsp; &nbsp;for ''j'' not equal ''k''
 +
 
 +
<br> Let A = [aij] be an n x n matrix. Then n xn adj A, called the adjoint of A, is the matrix whose (i,j)th entry is the cofactor Aji of aji. Thus;
 +
 
 +
<br>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<math>adj A=\left(\begin{array}{cccc}A11&A21&...&An1\\A12&A22&...&An2\\...&...&...&...\\A1n&A2n&...&Ann\end{array}\right)</math>
 +
 
 +
<br>
 +
 
 +
<strike></strike><sub></sub>Theorem 12: If A = [a<sub>ij</sub>] is an n x n matrix, then; '''A(adj A) = (adj A)A = det(A)I<sub>n</sub>.'''
 +
 
 +
----
 +
 
 +
----
 +
 
 +
<u>'''''Other applications of Determinants:'''''</u>
 +
 
 +
&lt;u&lt;/u&gt;
 +
 
 +
To obtain another method for solving a linear system of n equations in n unknowns is known as the Cramer's Rule.
 +
 
 +
<br>
 +
 
 +
Theorem 13: Cramer's Rule
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; Let;
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;a<sub>11</sub>x<sub>1</sub> + a<sub>12</sub>x<sub>2</sub> + ... + a<sub>1n</sub>x<sub>n</sub> = b<sub>1</sub>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;a<sub>21</sub>x<sub>1</sub> + a<sub>22</sub>x<sub>2</sub> + ... + a<sub>2n</sub>x<sub>n</sub> = b<sub>2</sub>
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;...&nbsp;
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;a<sub>n1</sub>x<sub>1</sub> + a<sub>n2</sub>x<sub>2</sub> + ... + a<sub>nn</sub>x<sub>n</sub> = b<sub>n</sub>
 +
 
 +
<sub></sub>
 +
 
 +
be a linear system of n equations in n unknowns, and let A = [aij] be the coefficient matrix so that we can write the given system as Ax = b, where
 +
 
 +
&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<math>b=\left(\begin{array}{cccc}b1\\b2\\...\\bn\end{array}\right)</math>
 +
 
 +
If det(A) not equal 0, then the system has the unique solutions

Revision as of 16:11, 7 December 2011

Determinants




Introduction:


If A is a square matrix then the determinant function is denoted by det and det(A)

For an instance we have a 2 x 2 matrix denominated A, therefore:


                                                                                         det(A) = [a11 ,  a12 ; a21 , a22 ]

As we already defined the determinant function we can write some formulas. The formulas for any 2 x 2 and 3 x 3 matrix will be:

                     

                      The determinant function for a 2 x 2 matrix is:


                                                                                      $ det(A)=\left(\begin{array}{cccc}a11&a12\\a21&a22\end{array}\right) $ 

                                                                                               = (a11 * a22) - (a12 * a21 )                        

                   

                      The determinant function for a 3 x 3 matrix is: 


                                                                               $ det(A)=\left(\begin{array}{cccc}a11&a12&a13\\a21&a22&a23\\a31&a32&a33\end{array}\right) $

                                         = (a11 * a22 * a33) + (a12 * a23 * a31) + (a13 * a21 * a32) - (a12 * a21 * a33) - (a11 * a23 * a32) - (a13 * a22 * a31



Properties of Determinants:


Theorem 1: Let A be an n x n matrix then; det(A) = det(At)


Theorem 2: If a matrix B results from matrix A by interchanging two different rows (columns) of A, then; det(B) = - det(A) 


Theorem 3: If two rows (columns) of A are equal, then; det(A) = 0


Theorem 4: If a row (column) of A consists entirely of zeros, then; det(A) = 0


Theorem 5: If B obtained from A by multiplying a row (column) of A by a real number k, then;det(B) = kdet(A)    

 

Theorem 6: If B = [bij] is obained from A = [aij] by adding to each element of the rth row (column) of A, k times the corresponding element of the sth row (column), r not equal s, of A, then; det(B) = det(A)


Theorem 7: If a matrix A = [aij] is upper (lower) triangular, then; det(A) = a11*a12...ann ; tha is, the determinant of a triangular matrix is the product of the element on themain diagonal.                                                       


Theorem 8: If A is an n x n matrix, then A is nonsingular if and only if det(A) not equal 0


Theorem 9: If A and B are n x n matrices, then; det(AB) = det(A)det(B)




Cofactor Expansion: 

The cofactor expansion is a method for evaluating the determinant of an n xn matrix that reduces the problem to the evaluation of determinants of matrices of order n - 1. We should repeat the proces of (n-1) x (n-1) until we have a 2 x 2 matrices. 


Let A = [aij] be an n x n matrix. Let Mij be the (n-1) x (n-1) submatrix of A obtained by deleting the ith row and jth row column of A. The determinant det(Mij) is called the minor aij. Also, Let A = [aij] be an n x n matrix. The cofactor Aij of aij is defined as Aij = (-1)i+j det(Mij)


Theorem 10: Let A = [aij] be an n x n matrix. then;

                                det(A) = ai1Ai1+ai2Ai2+...+ainAin                             and                        det(A)=a1jA1j+a2jA2j+...+anjAnj

                            [expansion of det(A) along the ith row]                                                [expansion of det(A) along the jth column]




Inverse of a Matrix:

<u</u>


Theorem 11: If A = [aij] is an n x nmatrix, then; 

                                      ai1Akl+ai2Ak2+...+ainAkn = 0    for i not equal k    ;    a1jA1k+a2jA2k+...+anjAnk    for j not equal k


Let A = [aij] be an n x n matrix. Then n xn adj A, called the adjoint of A, is the matrix whose (i,j)th entry is the cofactor Aji of aji. Thus;


                                                                     $ adj A=\left(\begin{array}{cccc}A11&A21&...&An1\\A12&A22&...&An2\\...&...&...&...\\A1n&A2n&...&Ann\end{array}\right) $


Theorem 12: If A = [aij] is an n x n matrix, then; A(adj A) = (adj A)A = det(A)In.



Other applications of Determinants:

<u</u>

To obtain another method for solving a linear system of n equations in n unknowns is known as the Cramer's Rule.


Theorem 13: Cramer's Rule

                                                                        Let;

                                                                                           a11x1 + a12x2 + ... + a1nxn = b1

                                                                                           a21x1 + a22x2 + ... + a2nxn = b2

                                                                                                                   ... 

                                                                                           an1x1 + an2x2 + ... + annxn = bn

be a linear system of n equations in n unknowns, and let A = [aij] be the coefficient matrix so that we can write the given system as Ax = b, where

                                                                                                    $ b=\left(\begin{array}{cccc}b1\\b2\\...\\bn\end{array}\right) $

If det(A) not equal 0, then the system has the unique solutions

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva