(New page: == Determinants == If A is a square matrix then the '''determinant function''' is denoted by '''det '''and '''det(A)''' For an instance we have a 2 x 2 matrix denominated A, theref...) |
|||
Line 1: | Line 1: | ||
− | == Determinants == | + | == Determinants == |
− | If A is a square matrix then the '''determinant function''' is denoted by '''det '''and '''det(A)''' | + | If A is a square matrix then the '''determinant function''' is denoted by '''det '''and '''det(A)''' |
− | For an instance we have a 2 x 2 matrix denominated A, therefore: | + | For an instance we have a 2 x 2 matrix denominated A, therefore: |
+ | <br> | ||
+ | '''det(A)''' = [a<sub>11</sub> , a<sub>12</sub> ; a<sub>21</sub> , a<sub>22 </sub>] | ||
− | + | As we already defined the determinant function we can write some formulas. The formulas for any 2 x 2 and 3 x 3 matrix will be: | |
− | + | ||
− | As we already defined the determinant function we can write some formulas. The formulas for any 2 x 2 and 3 x 3 matrix will be: | + | |
| | ||
Line 15: | Line 15: | ||
The determinant function for a 2 x 2 matrix is: | The determinant function for a 2 x 2 matrix is: | ||
+ | <br> | ||
+ | '''det(A)''' = [a<sub>11</sub> , a<sub>12</sub> ; a<sub>21</sub> , a<sub>22</sub>] | ||
− | + | = '''a<sub>11</sub> * a<sub>22</sub> - a<sub>12</sub> * a'''<sub>'''21'''</sub> | |
− | + | ||
− | = '''a<sub>11</sub> * a<sub>22</sub> - a<sub>12</sub> * a'''<sub>'''21'''</sub> | + | |
− | + | ||
− | + | ||
− | | + | |
+ | The determinant function for a 3 x 3 matrix is: | ||
+ | <br> | ||
− | det(A) = [a<sub>11</sub> , a<sub>12</sub>, a<sub>13</sub> ; a<sub>21</sub> , a<sub>22</sub> , a<sub>23</sub> ; a<sub>31</sub> , a<sub>32</sub> , a<sub>33</sub>] | + | det(A) = [a<sub>11</sub> , a<sub>12</sub>, a<sub>13</sub> ; a<sub>21</sub> , a<sub>22</sub> , a<sub>23</sub> ; a<sub>31</sub> , a<sub>32</sub> , a<sub>33</sub>] |
− | = '''(a<sub>11</sub> * a<sub>22</sub> * a<sub>33</sub>) + (a<sub>12</sub> * a<sub>23</sub> * a<sub>31</sub>) + (a<sub>13</sub> * a<sub>21</sub> * a<sub>32</sub>) - (a<sub>12</sub> * a<sub>21</sub> * a<sub>33</sub>) - (a<sub>11</sub> * a<sub>23</sub> * a<sub>32</sub>) - (a<sub>13</sub> * a<sub>22</sub> * a<sub>31</sub>) ''' | + | = '''(a<sub>11</sub> * a<sub>22</sub> * a<sub>33</sub>) + (a<sub>12</sub> * a<sub>23</sub> * a<sub>31</sub>) + (a<sub>13</sub> * a<sub>21</sub> * a<sub>32</sub>) - (a<sub>12</sub> * a<sub>21</sub> * a<sub>33</sub>) - (a<sub>11</sub> * a<sub>23</sub> * a<sub>32</sub>) - (a<sub>13</sub> * a<sub>22</sub> * a<sub>31</sub>) ''' |
− | | + | |
− | + | <math>\left(\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right)</math> <br> |
Revision as of 14:46, 7 December 2011
Determinants
If A is a square matrix then the determinant function is denoted by det and det(A)
For an instance we have a 2 x 2 matrix denominated A, therefore:
det(A) = [a11 , a12 ; a21 , a22 ]
As we already defined the determinant function we can write some formulas. The formulas for any 2 x 2 and 3 x 3 matrix will be:
The determinant function for a 2 x 2 matrix is:
det(A) = [a11 , a12 ; a21 , a22]
= a11 * a22 - a12 * a21
The determinant function for a 3 x 3 matrix is:
det(A) = [a11 , a12, a13 ; a21 , a22 , a23 ; a31 , a32 , a33]
= (a11 * a22 * a33) + (a12 * a23 * a31) + (a13 * a21 * a32) - (a12 * a21 * a33) - (a11 * a23 * a32) - (a13 * a22 * a31)
<math>\left(\begin{array}{cccc}1&2&3&4\\5&6&7&8\end{array}\right)</math>